
CSE 333 – SECTION 3
POSIX I/O Functions

Basic File Operations

• Open the file

• Read from the file

• Write to the file

• Close the file / free up resources

System I/O Calls

int open(char* filename, int flags, int mode);

Returns an integer which is the file descriptor.

Returns -1 if there is a failure.

filename: A string representing the name of the file.

flags: An integer code describing the access.

O_RDONLY -- opens file for read only

O_WRONLY – opens file for write only

O_RDWR – opens file for reading and writing

O_APPEND --- opens the file for appending

O_CREAT -- creates the file if it does not exist

O_TRUNC -- overwrite the file if it exists

mode: File protection mode. Ignored if O_CREAT is not specified.

[man 2 open]

System I/O Calls

size_t read(int fd, char *buffer, size_t bytes);

size_t write(int fd, char *buffer, size_t bytes);

fd: file descriptor.

buffer: address of a memory area into which the data is read.

bytes: the maximum amount of data to read from the stream.

The return value is the actual amount of data read from the file.

int close(int fd);

Returns 0 on success, -1 on failure.

[man 2 read]

[man 2 write]

[man 2 close]

Errors

• When an error occurs, the error number is stored in
“errno”, which is defined under errno.h

• View/Print details of the error using perror() and errno.

• POSIX functions have a variety of error codes to
represent different errors.

• Some common error conditions:
• EBADF - fd is not a valid file descriptor or is not open for reading.

• EFAULT - buf is outside your accessible address space.

• EINTR - The call was interrupted by a signal before any data was
read.

• EISDIR - fd refers to a directory.

[man 3 errno]

[man 3 perror]

Why learn these functions?

• They are unbuffered. You can implement different

buffering/caching strategies on top of read/write.

• More explicit control since read and write functions are

system calls and you can directly access system

resources.

• There is no standard higher level API for network and

other I/O devices.

STDIO vs. POSIX Functions

• User mode vs. Kernel mode.

• STDIO library functions – fopen, fread, fwrite, fclose, etc.

use FILE* pointers.

• POSIX functions – open, read, write, close, etc. use

integer file descriptors.

• Think about levels of abstraction

Standard I/O Calls

• Read the man pages!

• [man 3 stdio] for a full list of functions declared in <stdio.h>

• The most important (for you):
• fopen

• fclose

• fread

• fwrite

• fseek

• Be sure to check out some of the others though! You might just find

something interesting and/or useful!

Directories

• Accessing directories:

• Open a directory

• Iterate through its contents

• Close the directory

• Opening a directory:

DIR* opendir(char* dir_name);

• Opens a directory given by dir_name and provides a pointer DIR* to

access files within the directory.

• Don’t forget to close the directory when done:
int closedir(DIR* dirp);

[man 0P dirent.h]

[man 3 opendir]

[man 3 closedir]

Directories

• Reading a directory file.

int readdir_r(DIR *dirp, struct dirent *entry,

struct dirent **result);

• returns 0 on success.

• A NULL pointer is returned in *result when the end of the directory is reached.

struct dirent {

u_long d_ino; /* i-node number for the dir entry */

u_short d_reclen; /* length of this record */

off_t d_off; /* offset to the next dirent*/

unsigned char d_type; /* type of file; not supported by all

file system types */

char d_name[NAME_MAX+1] ; /* directory entry name */

};

[man 3 readdir] or

[man 3 readdir_r] but not

[man readdir]

