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How multicore programs actually run

Thread 1 Thread 2
tmpl = bal tmp2 = bal
bal = tmpl + 10 bal = tmp2 + 10
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What we probably meant

Thread 1 Thread 2
tmpl = bal
bal = tmpl + 10
tmp2 = bal
bal = tmp2 + 10
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Interleaving model

The execution behaves as if
steps of each thread were interleaved.
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Reasoning in Interleaving model

Thread 1 Thread 2
tmpl = bal
bal = tmpl + 10
tmp2 = bal
bal = tmp2 + 10
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Reasoning in Interleaving model

Thread 1 Thread 2
tmpl = bal
tmp2 = bal
bal = tmpl + 10
bal = tmp2 + 10
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Thread
tmpl = bal

bal = tmpl + 10



If the program is data race free, then:

The execution behaves as if
steps of each thread were interleaved.
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Data races

Two threads access:
the same location
at the same time
at least one of them writes
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Happens Before

Lamport 1978. “Time, Clocks, and the
Ordering of Events in a Distributed System”
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Thread 1
tmpl = bal
bal = tmpl + 10

Thread 2
tmp2 = bal
bal = tmp2 + 10
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Thread 1

lock m

tmpl = bal

bal = tmpl + 10
unlock m

Thread 2

lock m

tmp2 = bal

bal = tmp2 + 10
unlock m
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Thread 1
lock m

v

tmpl = bal
bal = tmpl + 10

v

unlock m

Thread 2

lock m
\
tmp2 = bal
bal = tmp2 + 10

v

unlock m
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How to find races

Track every memory location
Track happens before

Check every access is ordered
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How to Find races in practice (Eraser)

Enforce locking discipline

Can be implemented more efficiently
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How to Find races in practice (Eraser)

Enforce locking discipline
Can be implemented more efficiently

Reports races when no guarding lock
reflects engineering practice

False positives: other sync, “benign” races
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Safe languages

segfault -> ArrayOutOfBoundsExceptions

segfault -> NullPointerException

30



Safe concurrent languages

segfault -> ArrayOutOfBoundsExceptions
segfault -> NullPointerException

data race -> DataRaceException
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FTFY

Thread 1
lock m

tmp1l
unlock m

bal

lock m
bal = tmpl + 10
unlock m

Thread 2
lock m

tmp2
unlock m

bal

lock m
bal = tmp2 + 10
unlock m
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Other ways of finding races

Dynamic
Efficient HB detectors

Static
Static lockset
HB
Symbolic execution
Verification
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Weak memory models

Ensuring DRF may be prohibitively expensive
Interact directly with hardware memory model
Exposed through, eg, volatile

Lock-free data structures/algorithms

36



