
and tools to find them
CSE 333
James Wilcox

Concurrency bugs

2

Hi, I’m James

PL/Systems

Ask questions!

3

Hi, I’m James

PL/Systems

Ask questions!

“He’s an
expert!!”

4

5

Demo

6

7

8

9

10

11

How multicore programs actually run

Thread 1

tmp1 = bal

bal = tmp1 + 10

Thread 2

tmp2 = bal

bal = tmp2 + 10

12

How multicore programs actually run

Thread 1

tmp1 = bal

bal = tmp1 + 10

Thread 2
tmp2 = bal
bal = tmp2 + 10

What we probably meant

13

Thread 1

tmp1 = bal

bal = tmp1 + 10

Thread 2

tmp2 = bal

bal = tmp2 + 10

Interleaving model

The execution behaves as if
steps of each thread were interleaved.

14

Reasoning in Interleaving model

15

Thread 1

tmp1 = bal

bal = tmp1 + 10

Thread 2

tmp2 = bal

bal = tmp2 + 10

Reasoning in Interleaving model

16

Thread 1

tmp1 = bal

bal = tmp1 + 10

Thread 2

tmp2 = bal

bal = tmp2 + 10

Reasoning in Interleaving model

17

Thread 1

tmp1 = bal

bal = tmp1 + 10

Thread 2

tmp2 = bal

bal = tmp2 + 10

“Undefined
behavior!!!”

18

If the program is data race free, then:

The execution behaves as if
steps of each thread were interleaved.

19

20

Data races

Two threads access:
 the same location
 at the same time
 at least one of them writes

Happens Before

Lamport 1978. “Time, Clocks, and the
 Ordering of Events in a Distributed System”

21

22

Thread 1

tmp1 = bal

bal = tmp1 + 10

Thread 2

tmp2 = bal

bal = tmp2 + 10

23

Thread 1

lock m

tmp1 = bal

bal = tmp1 + 10

unlock m

Thread 2

lock m

tmp2 = bal

bal = tmp2 + 10

unlock m

24

Thread 1
lock m

tmp1 = bal

bal = tmp1 + 10

unlock m

Thread 2

lock m

tmp2 = bal

bal = tmp2 + 10

unlock m

25

26

How to find races

Track every memory location

Track happens before

Check every access is ordered

27

How to find races

Track every memory location

Track happens before

Check every access is ordered

“Slow!”

How to find races in practice (Eraser)

Enforce locking discipline

Can be implemented more efficiently

28

How to find races in practice (Eraser)

Enforce locking discipline

Can be implemented more efficiently

Reports races when no guarding lock
 reflects engineering practice

False positives: other sync, “benign” races

29

Safe languages

segfault -> ArrayOutOfBoundsExceptions

segfault -> NullPointerException

30

Safe concurrent languages

segfault -> ArrayOutOfBoundsExceptions

segfault -> NullPointerException

data race -> DataRaceException

31

FTFY

32

Thread 1

lock m

 tmp1 = bal

unlock m

lock m

 bal = tmp1 + 10

unlock m

Thread 2

lock m

 tmp2 = bal

unlock m

lock m

 bal = tmp2 + 10

unlock m

FTFY

33

Thread 1

lock m

 tmp1 = bal

unlock m

lock m

 bal = tmp1 + 10

unlock m

Thread 2

lock m

 tmp2 = bal

unlock m

lock m

 bal = tmp2 + 10

unlock m

“Still wrong!”

34

DRF ⇒ SC

35

Other ways of finding races

Dynamic
 Efficient HB detectors

Static
 Static lockset
 HB
 Symbolic execution
 Verification

Weak memory models

Ensuring DRF may be prohibitively expensive

Interact directly with hardware memory model

Exposed through, eg, volatile

Lock-free data structures/algorithms

36

