Concurrency bugs

and tools to find them

CSE 333
James Wilcox



Hi, I'm James
PL/Systems

Ask questions!







Eraser: A Dynamic Data Race Detector for
Multithreaded Programs

STEFAN SAVAGE

University of Washington

MICHAEL BURROWS, GREG NELSON, and PATRICK SOBALVARRO
Digital Equipment Corporation

and

THOMAS ANDERSON

University of California at Berkeley

Multithreaded programming is difficult and error prone. It is easy to make a mistake in
synchronization that produces a data race, yet it can be extremely hard to locate this mistake




Demo



Eraser: iIc Data Race Detector for
Multithreaded Programs

STEFAN SAVAGE

University of Washington

MICHAEL BURROWS, GREG NELSON, and PATRICK SOBALVARRO
Digital Equipment Corporation

and

THOMAS ANDERSON

University of California at Berkeley

Multithreaded programming is difficult and error prone. It is easy to make a mistake in
synchronization that produces a data race, yet it can be extremely hard to locate this mistake













10



How multicore programs actually run

Thread 1 Thread 2
tmpl = bal tmp2 = bal
bal = tmpl + 10 bal = tmp2 + 10

11






What we probably meant

Thread 1 Thread 2
tmpl = bal
bal = tmpl + 10
tmp2 = bal
bal = tmp2 + 10

13



Interleaving model

The execution behaves as if
steps of each thread were interleaved.

14



Reasoning in Interleaving model

Thread 1 Thread 2
tmpl = bal
bal = tmpl + 10
tmp2 = bal
bal = tmp2 + 10

15



Reasoning in Interleaving model

Thread 1 Thread 2
tmpl = bal
tmp2 = bal
bal = tmpl + 10
bal = tmp2 + 10

16



Thread
tmpl = bal

bal = tmpl + 10



If the program is data race free, then:

The execution behaves as if
steps of each thread were interleaved.

18



Eraser: A Dynami€_Data Race Detector for
Multithreaded Programs

STEFAN SAVAGE

University of Washington

MICHAEL BURROWS, GREG NELSON, and PATRICK SOBALVARRO
Digital Equipment Corporation

and

THOMAS ANDERSON

University of California at Berkeley

Multithreaded programming is difficult and error prone. It is easy to make a mistake in
synchronization that produces a data race, yet it can be extremely hard to locate this mistake

19



Data races

Two threads access:
the same location
at the same time
at least one of them writes

20



Happens Before

Lamport 1978. “Time, Clocks, and the
Ordering of Events in a Distributed System”

21



Thread 1
tmpl = bal
bal = tmpl + 10

Thread 2
tmp2 = bal
bal = tmp2 + 10

22



Thread 1

lock m

tmpl = bal

bal = tmpl + 10
unlock m

Thread 2

lock m

tmp2 = bal

bal = tmp2 + 10
unlock m

23



Thread 1
lock m

v

tmpl = bal
bal = tmpl + 10

v

unlock m

Thread 2

lock m
\
tmp2 = bal
bal = tmp2 + 10

v

unlock m

24



Eraser: A Dynamic Data Rac€ Detector Jor
Multithreaded Programs

STEFAN SAVAGE

University of Washington

MICHAEL BURROWS, GREG NELSON, and PATRICK SOBALVARRO
Digital Equipment Corporation

and

THOMAS ANDERSON

University of California at Berkeley

Multithreaded programming is difficult and error prone. It is easy to make a mistake in
synchronization that produces a data race, yet it can be extremely hard to locate this mistake

25



How to find races

Track every memory location
Track happens before

Check every access is ordered

26



27



How to Find races in practice (Eraser)

Enforce locking discipline

Can be implemented more efficiently

28



How to Find races in practice (Eraser)

Enforce locking discipline
Can be implemented more efficiently

Reports races when no guarding lock
reflects engineering practice

False positives: other sync, “benign” races

29



Safe languages

segfault -> ArrayOutOfBoundsExceptions

segfault -> NullPointerException

30



Safe concurrent languages

segfault -> ArrayOutOfBoundsExceptions
segfault -> NullPointerException

data race -> DataRaceException

31



FTFY

Thread 1
lock m

tmp1l
unlock m

bal

lock m
bal = tmpl + 10
unlock m

Thread 2
lock m

tmp2
unlock m

bal

lock m
bal = tmp2 + 10
unlock m

32









Other ways of finding races

Dynamic
Efficient HB detectors

Static
Static lockset
HB
Symbolic execution
Verification

35



Weak memory models

Ensuring DRF may be prohibitively expensive
Interact directly with hardware memory model
Exposed through, eg, volatile

Lock-free data structures/algorithms

36



