
CSE333 lec 18 networks.3 // 11-17-17 // Perkins

CSE 333
Lecture 18 -- server sockets

Hal Perkins
Paul G. Allen School of Computer Science & Engineering
University of Washington

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Administrivia
Exercise covering client-side programming posted
yesterday, due Monday morning

Next exercise covers today’s server-side code. Posted
this morning in case people want to get started over the
weekend, but not due until Wednesday morning.

HW4 posted now, files pushed after class; due last
Thursday of the quarter (+ late days if you have them)

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Today

Network programming
- server-side programming

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Servers
Pretty similar to clients, but with additional steps
- there are seven steps:

1. figure out the address and port on which to listen

2. create a socket

3. bind the socket to the address and port on which to listen

4. indicate that the socket is a listening socket

5. accept a connection from a client

6. read and write to that connection

7. close the connection

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Accepting a connection from a client

Step 1. Figure out the address and port on which to listen.

Step 2. Create a socket.

Step 3. Bind the socket to the address and port on which to listen.

Step 4. Indicate that the socket is a listening socket.

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Servers
Servers can have multiple IP addresses
- “multihomed”

- usually have at least one externally visible IP address, as well
as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:
- specify that it should listen on all addresses

‣ by specifying the address “INADDR_ANY” or “in6addr_any” --
0.0.0.0 or :: (i.e., all 0’s)

- specify that it should listen on a particular address

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

bind()
The “bind()” system call associates with a socket:
- an address family

‣ AF_INET: IPv4

‣ AF_INET6: IPv6 (also handles IPv4 clients on POSIX systems)

- a local IP address
‣ the special IP address INADDR_ANY (“0.0.0.0”) means “all local

IPv4 addresses of this host”

‣ use in6addr_any (instead of INADDR_ANY) for IPv6

- a local port number

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

listen()

The “listen()” system call tells the OS that the socket is a
listening socket to which clients can connect
- you also tell the OS how many pending connections it should

queue before it starts to refuse new connections
‣ you pick up a pending connection with “accept()”

- when listen returns, remote clients can start connecting to
your listening socket
‣ you need to “accept()” those connections to start using them

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Server socket, bind, listen

see server_bind_listen.cc

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Accepting a connection from a client

Step 5. accept() a connection from a client.

Step 6. read() and write() to the client.

Step 7. close() the connection.

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

accept()

The “accept()” system call waits for an incoming
connection, or pulls one off the pending queue
- it returns an active, ready-to-use socket file descriptor

connected to a client

- it returns address information about the peer
‣ use inet_ntop() to get the client’s printable IP address

‣ use getnameinfo() to do a reverse DNS lookup on the client

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Server accept, read/write, close

see server_accept_rw_close.cc

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Something to note...

Our server code is not concurrent
- single thread of execution

- the thread blocks waiting for the next connection

- the thread blocks waiting for the next message from the
connection

A crowd of clients is, by nature, concurrent
- while our server is handling the next client, all other clients are

stuck waiting for it

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Before we go…

hw4 demo

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Exercise 1

Write a program that:
- creates a listening socket, accepts connections from clients

‣ reads a line of text from the client

‣ parses the line of text as a DNS name

‣ does a DNS lookup on the name

‣ writes back to the client the list of IP addrsses associated with the
DNS name

‣ closes the connection to the client

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Exercise 2

Write a program that:
- creates a listening socket, accepts connections from clients

‣ reads a line of text from the client

‣ parses the line of text as a DNS name

‣ connects to that DNS name on port 80

‣ writes a valid HTTP request for “/”

• see next slide for what to write

‣ reads the reply, returns the reply to the client

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

Exercise 2 continued
Here’s a valid HTTP request to server www.foo.com
- note that lines end with ‘\r\n’, not just ‘\n’

GET / HTTP/1.0\r\n
Host: www.foo.com\r\n
Connection: close\r\n
\r\n

CSE333 lec 18 networks.3 // 11-17-17 // Perkins

See you on Wednesday!

