CSE 333 — SECTION 2

Programming Tools

Questions, Comments, Concerns

- Do you have any?

- Exercises going ok?

- Lectures make sense”?

- Homework 1 — Should have started by now!

Exercises!

- Comments
- Program Comments — Author, copyright, problem description at the top

- Function Comments — Near the prototype/declaration in header files; local functions are a
more complex story, but near the prototype works for those too.

- clint or cpplint errors
- Valgrind errors
- Check for error codes/return values and handle them correctly!

S
GNU Debugger (gdb)

- Use it!
- Run your C program using gcc with the —g flag along with
the other relevant flags

- Refer to the gdb common commands card linked on the
course website

- Explore the —tui option with gdb

Demo

gdb demo: [buggy.c]

Valgrind

Use of uninitialized memory

Reading/writing memory after it has been freed
Reading/writing of the end of malloc'd blocks
Reading/writing inappropriate areas on the stack

Memory leaks (where pointers to malloc'd blocks are lost
forever)

Mismatched use of malloc/new/new[] vs free/delete/
delete]]

These errors usually lead to crashes.

Reading uninitialized memory

1 #include "stdlib.h"

2 int main(int argc, char =xargv|[]) {

3 int xXx;

4 *X = 4; // XXX Using x before initialized.
5 return EXIT_SUCCESS;

6

}

Valgrind Output

==2205== Use of uninitialised value of size 8
=2205=—= at 0x4004AB: main (error.c:4)

B
lllegal reads and writes

1 +#include "stdlib.h"

2 #include "stdio.h"

3 int main(int argc, char =argv[]) {

4 int *x = (int=)malloc(sizeof(int));

5 X += 2; // x now points to invalid memory (some random location).

6 printf("%d\n", *x); // XXX Reading to an invalid location of memory.
7 *x = 4; [/ XXX Writing to an invalid location of memory.
8 free (x—2);

9 printf(~%d\n", =((int=*=)3838338)); // XXX And even worse read.

10 return EXIT_SUCCESS;

11}

==3023== Invalid read of size 4

==3023== at 0x400592: main (error.c:6)

==3023== Address 0x51d2048 is 4 bytes after a block of size 4 alloc’d

==3023== at 0x4C2A93D: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==3023== by 0x400584: main (error.c:4)

==3023==

==3023== Invalid write of size 4

==3023== at 0x4005A9: main (error.c:7)

==3023== Address 0x51d2048 is 4 bytes after a block of size 4 alloc’d

==3023== at 0x4C2A93D: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==3023== by 0x400584: main (error.c:4)

==3023==

==3023== Invalid read of size 4

==3023== at 0x4005C4: main (error.c:9)

==3023== Address 0x3a9182 is not stack’d, malloc’d or (recently) free’d

Memory leaks

1 #include "=tdlib.h"

2 #include "=tdio.h’

3 int main(int argc, char =argv|[]) {

4 int *x = (int*)malloc(sizeof(int));

5 *=x = 4;

6 printf("%d\n", =*x);

7 raturn EXIT_SUCCESS; // XXX Oh no! We didn't free
8 }

Valgrind Output

==3093== HEAP SUMMARY:

==3093== in use at exit: 4 bytes in 1 blocks

==3093== total heap usage: 1 allocs, 0 frees, 4 bytes allocated
==3093==

==3093== 4 bytes in 1 blocks are definitely lost in loss record i1 of 1
==3093== at Ox4C2A93D: malloc (in /usr/1lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==3093== by 0x400544: main (error.c:3)

==3093==

==3093== LEAK SUMMARY:

==3093== definitely lost: 4 bytes in 1 blocks

==3093== indirectly lost: O bytes in O blocks

==3093== possibly lost: O bytes in O blocks

==3093== still reachable: O bytes in 0 blocks

==3093== suppressed: O bytes in O blocks

Demo

Valgrind demo: [leaky.c]

Section Exercise 1

- Memory Diagrams (Handout 1)

Section Exercise 2

- Clean up buggy code imsobuggy.c (Handout 2)

