W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

C++ References, Const, Classes
CSE 333 Winter 2019

Instructor: Hal Perkins

Teaching Assistants:
Alexey Beall Renshu Gu Harshita Neti

David Porter Forrest Timour Soumya Vasisht

Yifan Xu Sujie Zhou

w UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Administrivia

+ Yet another exercise released today, due Friday

+ Sections this week: C++ classes, references + Makefiles!

Don’t miss!! —you’ll need to create Makefiles (very) soon, and this
is the only time we’ll talk about them in class

<+ Homework 2 due next Thursday (2/7)

Note: 1ibhwl . a (yours or ours) needs to be in correct directory
(hwl/)

Use Ctrl-D to exit searchshell; must free all allocated
memory

Test on directory of small self-made files

Valgrind takes a long time on the full test_tree. Try using enron
docs only or other small test data directory.

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Office hours

+» No customers at 9:30-10:30 on Wednesdays

+ Propose dropping that early morning slot and adding
Thursdays 2:30-3:30 in addition to existing coverage

+» Bug? Feature?

= (assuming !bug we’ll do it starting tomorrow)

W UNIVERSITY of WASHINGTON

Lecture Outline

+ C++ References
& constin C++

« C++ Classes Intro

L11: References, Const, Classes

CSE333, Winter 2019

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x = 5, y = 10; X 5
) Nt* z = §&X;

return EXIT SUCCESS;

L J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Note: Arrow points

POinterS Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { b
int x =5, y = 10; n -
int* z = &x; f?

— *z += 1;
x += 1; y 10
L &
*z += 1; \
return EXIT SUCCESS; z |0x78If..ad
}
\ J

pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Note: Arrow points

POinterS Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {

int* z = &x;

*z += 1; // sets x to 6

— x += 1; y 10
HZoa= g ‘Q\

4 Ox7ﬁ5fma4

return EXIT SUCCESS;
}

L J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Note: Arrow points

POinterS Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {

int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

10

Q ky N\

4 Ox7ﬁ5fma4

return EXIT SUCCESS;
}

L J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Note: Arrow points

POinterS Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x = 5, y = 10; X 7
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 v 10

z = &y; // sets z to the address of y
— k7 += 1;

A Ox7ﬁ&fma0

return EXIT SUCCESS;

}

L J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Note: Arrow points

POinterS Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { B
int x = 5, y = 10; X 7
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 y il
= &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11 "_\\
=P rcturn EXIT SUCCESS; z | 0x789¢.a0
}
\ y

pointer.cc
10

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Note: Arrow points

References to next instruction.

« A reference is an alias for another variable

" Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) {
int x = 5, y = 10; X 5
—) Nt& Z = X;

z += 1;
x += 1; v 10
z =Y
z += 1;

return EXIT SUCCESS;

}

_ Y,
reference.cc

11

W UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

" Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

L11: References, Const, Classes

ﬁ

(int main (int argc, char** argv) { b
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
z += 1;
X += 1;
zZ = y;
z += 1;
return EXIT SUCCESS;

}
. J

CSE333, Winter 2019

Note: Arrow points
to next instruction.

10

reference.cc

12

W UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

" Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

CSE333, Winter 2019

Note: Arrow points
to next instruction.

10

" |ntroduced in C++ as part of the language
- : . N\
int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
— x += | ;
7 = Y
z += 1;
return EXIT SUCCESS;
\} y

reference.cc

13

W UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

" Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) {

int x = 5, y = 10;

int& z = x; // binds the name

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7
— ; = y;

z += 1;

\.

return EXIT SUCCESS;
}

"z" to x

CSE333, Winter 2019

Note: Arrow points
to next instruction.

10

J

reference.cc

14

W UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

" Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv)
int x = 5, y = 10;

{

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7

z =vy; // sets z (and x) to the value of y
— z += 1;

return EXIT SUCCESS;
}

CSE333, Winter 2019

Note: Arrow points
to next instruction.

10

10

J

reference.cc

15

W UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

" Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

" |ntroduced in C++ as part of the language

(int main(int a
int x = 5, y

int& z = x;
z += 1; //
x += 1; //
z =v; //
z += 1; //

m—tePp return EXIT
}

\.

rgc,
= 10;

// binds the name

sets z
sets x

sets z
sets z

SUCCESS;

(and x)
(and Zz)

(and x)
(and x)

char** argv) {

"Z" to X
to 6
to 7
to the value of y
to 11

CSE333, Winter 2019

Note: Arrow points
to next instruction.

11

10

J

reference.cc

16

W UNIVERSITY of WASHINGTON L11:

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

References, Const, Classes

CSE333, Winter 2019

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

rvoid swap (int& x, int& y) { R
int tmp = x;
X = y;
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
=t swap (a, Db);
cout << "a: " <K a << "; b: " <K< b << endl;
return EXIT SUCCESS;
\} J

(main) a 5

(main) b 10

passbyreference.cc

17

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L11: References, Const, Classes

CSE333, Winter 2019

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

fvoid swap (inté& x, inté& y) { R
=P int tmp = X;
X = y;
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
swap (a, b);
cout << "a: " <K a << "; b: " <K< b << endl;
return EXIT SUCCESS;
\} J

(main) a
5
(swap) x
(main) b 10
(swap) y
(swap) tmp

passbyreference.cc

18

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L11: References, Const, Classes

CSE333, Winter 2019

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) {

int tmp = x;
—p X =Y
y = tmp;

}

int a = 5, b = 10;

swap (a, b);
cout << "a: " < a << "y,
return EXIT SUCCESS;

\

int main(int argc, char** argv) {

b:

\

" << b << endl;

(main) a
5

(swap) x
(main) b 10

(swap) y
(swap) tmp 5

J

passbyreference.cc

19

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L11: References, Const, Classes

CSE333, Winter 2019

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) {
int tmp = x;
X = Yy;

Py = tmp;

}

int a = 5, b = 10;

swap (a, b);
cout << "a: " < a << "y,
return EXIT SUCCESS;

\

int main(int argc, char** argv) {

b:

\

" << b << endl;

(main) a 10
(swap) x
(main) b 10
(swap) y

(swap) tmp 5

J

passbyreference.cc

20

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L11: References, Const, Classes

CSE333, Winter 2019

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

fvoid swap (inté& x, inté& y) { R
int tmp = x;
X = y;
y = tmp;

q
int main(int argc, char** argv) {

int a = 5, b = 10;
swap (a, b);
cout << "a: " <K<K a << "; b: " KL b << endl;
return EXIT SUCCESS;

\} J

(main) a 10
(swap) x
(main) b 5
(swap) y

(swap) tmp 5

passbyreference.cc

21

W UNIVERSITY of WASHINGTON L11:

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

References, Const, Classes

CSE333, Winter 2019

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

rvoid swap (inté& x, inté& y) { R
int tmp = x;
X =V
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
swap (a, b);
mmmelp cOULt << "a: " << a << "; b: " <K<K b << endl;
return EXIT SUCCESS;
\} J

(main) a 10

(main) b 5

passbyreference.cc

22

W UNIVERSITY of WASHINGTON

Lecture Outline

« C++ References
« constin C++

« C++ Classes Intro

L11: References, Const, Classes

CSE333, Winter 2019

23

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

const

%+ const: this cannot be changed/mutated

" Used much more in C++ thanin C

= Signal of intent to compiler; meaningless at hardware level

- Results in compile-time errors

rvoid BrokenPrintSquare (const inté& 1) {)

i = 1i*i; // compiler error here!
std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int J = 2;
BrokenPrintSquare (j) ;
return EXIT SUCCESS;

}

\. J

brokenpassbyrefconst.cc

24

w UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

const and Pointers

+ Pointers can change data in two different contexts:

0

1) You can change the value of the pointer

2) You can change the thing the pointer points to (via dereference)

const can be used to prevent either/both of these
behaviors!

" const next to pointer name means you can’t change the value of
the pointer

" const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

" Tip: read variable declaration from right-to-left

25

W UNIVERSITY of WASHINGTON

L11: References, Const, Classes CSE333, Winter 2019

const and Pointers

+ The syntax with pointers is confusing:

/. . c
int main(int argc,

int x = 5;

const int y = 6;
V++;

const int *z = &y;
*z += 1;

z++;

int *const w = &x;
*w o= 15

w++;

const int *const v =
*v += 1;
v++;

return EXIT SUCCESS;

&X;

char** argv) {

//
//
//

//
//
//

//
//
//

//
//
//

int
(const int)
compiler error

pointer to a (const 1int)

compiler error
ok

(const pointer) to a (variable int)
ok
compiler error

(const pointer) to a (const int)
compiler error
compiler error

J

constmadness.cc

CSE333, Winter 2019

W UNIVERSITY of WASHINGTON L11: References, Const, Classes

const Parameters

< A const parameter (void foo(const int* y) {
. . std::cout << *y << std::endl;
cannot be mutated inside |
the function void bar(int* y) |
_ std::cout << *y << std::endl;
" Therefore it does not)
matter if the argument can int main(int argc, char** argv) |
be mutated or not const int a = 10;
int b = 20;
foo (&a) ; // OK
< A non-const parameter foo(sb); // OK
.. bar (&a) ; // t OK -
may be mutated inside S A T
the function return EXTT SUCCESS;
" |t would be BAD if you L /

passed it a const variable

27

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Style Guide Tip

+ Use const reference parameters for input values

= Particularly for large values (no copying)

+» Use pointers for output parameters

+ List input parameters first, then output parameters last

(void CalcArea(const int& width, const i1nté& height,\
int* const area) {
*area = width * height;
}

int main(int argc, char** argv) {
int w= 10, h = 20, a;
CalcArea(w, h, &a):;
return EXIT SUCCESS;

}

L J
styleguide.cc

29

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

When to Use References?

+ A stylistic choice, not mandated by the C++ language

+» Google C++ style guide suggests:

" |nput parameters:

- Either use values (for primitive types like int or small
structs/objects)

- Or use const references (for complex struct/object instances)
" Qutput parameters:

- Use const pointers

— Unchangeable pointers referencing changeable data

30

W UNIVERSITY of WASHINGTON

Lecture Outline

« C++ References
& constin C++

« C++ Classes Intro

L11: References, Const, Classes

CSE333, Winter 2019

31

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Classes

+ Class definition syntax (in a .h file):

rclass Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here
Y: // class Name

.

" Members can be functions (methods) or data (variables)

+ Class member function definition syntax (in a .cc file):

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements
}

" (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

32

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Class Organization

+ It’s a little more complex than in C when modularizing
with struct definition:
" Class definition is part of interface and should go in . h file
- Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details

- Common exception: setter and getter methods

® These files can also include non-member functions that use the
class

+ Unlike Java, you can name files anything you want
" Typically Name.ccand Name.hforclass Name

33

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Class Definition (. h file)

Point.h
(4ifndef POINT H_)
#define POINT H
class Point {
public:
Point (const int x, const int y); // constructor
int get x() const { return x ; } // inline member function
int get y() const { return y ; } // inline member function
double Distance(const Pointé& p) const; // member function

void SetLocation (const int x, const int y); // member function

private:
int x ; // data member
int y ; // data member
}; // class Point

#endif // POINT H
L _ _d

34

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Class Member Definitions (. cc file)

Point.cc
(#include <cmath> h
#include "Point.h"
Point::Point (const int x, const int y) {
X = x;
this->y = y; // "this->" is optional unless name conflicts

}

double Point::Distance (const Pointé& p) const {
// We can access p’s x and y variables either through the

// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member

// function of the same class.

double distance = (x - p.get x()) * (x - p.get x());
distance += (y - p.y) * (y - p.y);

return sqrt(distance);

}

void Point::SetlLocation(const int x, const int y) {
X = Xy

Y T Yr

)

35

W UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Class Usage (. cc file)

CSE333, Winter 2019

usepoint.cc

#include "Point.h"

int main(int argc,
Point pl (1, 2);
Point p2 (4, 6);

cout << "pl is:

cout << "p2 is:

cout << "dist
return 0;

4 , \
#include <iostream>

using namespace std;

char** argv) {
// allocate a new Point on the Stack
// allocate a new Point on the Stack

(" << pl.get x() << ", ";

cout << pl.get y() << ")" << endl;

(" << p2.get x() << ", ";

cout << pZ2.get y() << ")" << endl;

" << pl.Distance (p2) << endl;

N\

36

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2019

Reading Assighment

+ Before next time, read the sections in C++ Primer covering
class constructors, copy constructors, assignment
(operator=), and destructors
" |gnore “move semantics” for now
" The table of contents and index are your friends...

= Should we start class with a quiz next time?

37

W UNIVERSITY of WASHINGTON L11: References, Const, Classes

Extra Exercise #1

+ Write a C++ program that:

" Has a class representing a 3-dimensional point
" Has the following methods:

- Return the inner product of two 3D points

- Return the distance between two 3D points

- Accessors and mutators for the x, v, and z coordinates

CSE333, Winter 2019

38

W UNIVERSITY of WASHINGTON

L11: References, Const, Classes

CSE333, Winter 2019

Extra Exercise #2

+ Write a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

" Has the following methods:

- Test if one box is inside another box

« Return the volume of a box

- Handles <<, =, and a copy constructor

- Uses const in all the right places

39

