
CSE 333 – SECTION 2
Programming Tools - gdb, valgrind

Questions, Comments, Concerns

• Do you have any?
• Exercises going ok?
• Lectures make sense?
• Homework 1 – START EARLY!

Common Exercise Errors
• Comments

• Program Comments – Author, copyright, problem description at the top
• Function Comments – Near the prototype/declaration, not near the definition

• clint or cpplint errors
• Valgrind errors

Memory Management

• Heap
- Large pool of unused memory
- malloc() allocates chunks of this

memory
- free() deallocates memory and

reclaims space

• Stack and stack frame
• Stores temporary/local variables
• Each function has its own stack

frame

• Lifetime on heap vs. Lifetime on stack

Segmentation fault

• Causes of segmentation fault
• Dereferencing uninitialized pointer
• Null pointer
• A previously freed pointer
• Accessing end of an array
• …

• gdb (GNU Debugger) is a debugging tool
• Very useful in tracking undefined behavior

reverse.c demo + code fix

Memory Errors

• Use of uninitialized memory
• Reading/writing memory after it has been freed – Dangling pointers
• Reading/writing to the end of malloc'd blocks
• Reading/writing to inappropriate areas on the stack
• Memory leaks where pointers to malloc'd blocks are lost
• Mismatched use of malloc/new/new[] vs free/delete/delete[]

Valgrind is your friend!!

Some buggy code
1. #include <stdio.h>
2. #include <stdlib.h>

3. //Returns an array containing [n, n+1, ... , m-1, m]. If n>m, then the
4. //array returned is []. If an error occurs, NULL is returned.

5. int *RangeArray(int n, int m) {
6. int length = m-n+1;
7.
8. //Heap allocate the array needed to return
9.
10. int *array = (int*) malloc(sizeof(int)*length);
11.
12. //Initialize the elements
13. for(int i=0;i<=length; i++)
14. array[i] = i+n;

15. return array;
16. }

17. //Accepts two integers as arguments
18. int main(int argc, char *argv[]) {
19. if(argc != 3) return EXIT_FAILURE;
20. int n = atoi(argv[1]), m = atoi(argv[2]); //Parse cmd-line args
21. int *nums = RangeArray(n,m);

22. //Print the resulting array
23. for(int i=0; i<= (m-n+1); i++)
24. printf(“%d”, nums[i]);
25. puts(“”);

26. return EXIT_SUCCESS;
27. }

Valgrind output
==22891== Command: ./warmup 1 10
==22891==
==22891== Invalid write of size 4
==22891== at 0x400616: RangeArray (warmup.c:14)
==22891== by 0x400683: main (warmup.c:22)
==22891== Address 0x51d2068 is 0 bytes after a block of size 40 alloc'd
==22891== at 0x4C2A93D: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==22891== by 0x4005EC: RangeArray (warmup.c:10)
==22891== by 0x400683: main (warmup.c:22)
==22891==
==22891== Invalid read of size 4
==22891== at 0x4006A5: main (warmup.c:26)
==22891== Address 0x51d2068 is 0 bytes after a block of size 40 alloc'd
==22891== at 0x4C2A93D: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==22891== by 0x4005EC: RangeArray (warmup.c:10)
==22891== by 0x400683: main (warmup.c:22)
==22891==
1 2 3 4 5 6 7 8 9 10 11
==22891==
==22891== HEAP SUMMARY:
==22891== in use at exit: 40 bytes in 1 blocks
==22891== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==22891==
==22891== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==22891== at 0x4C2A93D: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==22891== by 0x4005EC: RangeArray (warmup.c:10)
==22891== by 0x400683: main (warmup.c:22)
==22891==
==22891== LEAK SUMMARY:
==22891== definitely lost: 40 bytes in 1 blocks
==22891== indirectly lost: 0 bytes in 0 blocks
==22891== possibly lost: 0 bytes in 0 blocks
==22891== still reachable: 0 bytes in 0 blocks
==22891== suppressed: 0 bytes in 0 blocks
==22891==
==22891== For counts of detected and suppressed errors, rerun with: -v
==22891== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 3 from 3)

Demo: leaky code

leaky.c demo + code fix

Section exercise

• Handouts.
• Work with a partner, if you wish.
• Look at the expandable vector code in imsobuggy.c.
• First, try to find all the bugs by inspection.
• Then try to use Valgrind on the same code.

Code is located at
 https://courses.cs.washington.edu/courses/cse333/19wi/sections/sec2-code/

https://courses.cs.washington.edu/courses/cse333/19wi/sections/sec2-code/

	Slide 1
	Questions, Comments, Concerns
	Memory Management
	Segmentation fault
	Memory Errors
	Some buggy code
	Valgrind output
	Demo: leaky code
	Section exercise

