
CSE333, Fall 2023L01: Intro, C Refresher

Intro, C Refresher
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu
Yegor Kuznetsov

CSE333, Fall 2023L01: Intro, C Refresher

Introductions: Instructor

❖ Chris (he/him)
From Canada (with lots of moving around)
• Windsor (CA) → Toronto (CA) → Vancouver (CA) → Mexico City (MX)

→ Vancouver (CA) → Oxford (UK) → Pasadena (USA) → Seattle (USA)
I like: research, teaching, training, hiking, sci-fi
As a high school student (many years ago) I won a contest and
was gifted a copy of “Visual Studio C++” and have been
programming in C/C++ ever since
I research systems programming of molecules such as DNA!

2

int main(int argc, char** argv) {
 make_triangle_from_DNA();
 return EXIT_SUCCESS;
}

Chris

CSE333, Fall 2023L01: Intro, C Refresher

Introductions: Teaching Assistants

Available in section, office hours, and discussion board

❖ More than anything, we want you to feel…
Comfortable and welcome in this space
Able to learn and succeed in this course
Comfortable reaching out if you need help or want change 3

Alan Ann Chanh Hannah Humza

Jen

James

Leanna Noa Yegor Yuquan (Nil)

CSE333, Fall 2023L01: Intro, C Refresher

Introductions: Students

❖ ~170 students registered
There are no overload forms or waiting lists for CSE courses
• Majors must add using the UW system as space becomes available
• Non-majors would have already needed to petition before today

❖ Expected background
Prereq: CSE 351 – C, pointers, memory model, linker, system calls
Indirect Prereq: CSE 143 – Classes, Inheritance, Basic Data
structures, and general good style practices
CSE 391 or Linux skills needed for CSE 351 assumed

4

CSE333, Fall 2023L01: Intro, C Refresher

Introductions: Students

❖ Get to know each other! Help each other out!
Working well with others is a valuable life skill
Helping others is rewarded in this course
Take advantage of partner work, where permissible, to
learn, not just get a grade
• Good chance to learn collaboration tools and tricks

5

CSE333, Fall 2023L01: Intro, C Refresher

Lecture Outline

❖ Course Policies
https://courses.cs.washington.edu/courses/cse333/23au/syllabus.html
Digest here, but you must read the full details online

❖ Course Introduction
❖ C Reintroduction

6

CSE333, Fall 2023L01: Intro, C Refresher

Communication

❖ Website: http://cs.uw.edu/333
Schedule, policies, materials, assignments, etc.

❖ Discussion: https://edstem.org/us/courses/47406/discussion/
Announcements made here
Ask and answer questions – staff will monitor and contribute

❖ Office Hours: spread throughout the week
Can fill out Google Form to schedule individual 1-on-1
appointments

❖ Anonymous feedback

7

CSE333, Fall 2023L01: Intro, C Refresher

Course Components
❖ Lectures (26+1)

Introduce the concepts; take notes!!!

❖ Sections (10)
Applied concepts, important tools and skills for assignments,
clarification of lectures, exam review and preparation

❖ Programming Exercises (12-15)
One due roughly every 2-4 days
We are checking for: correctness, memory issues, code style/quality

❖ Programming Projects (0+4)
Warm-up, then 4 “homework” that build on each other
Homework 2, 3 and 4 can be completed with a partner

❖ In-Person Exams (2)
Midterm (TBD)
Final (Dec. 13)

8

CSE333, Fall 2023L01: Intro, C Refresher

Grading
❖ Exercises: 30% total

Submitted via GradeScope (under your UW email)
Graded on correctness and style by autograders and TAs

❖ Projects: 43% total
Submitted via GitLab; must tag commit that you want graded
Binaries provided if you didn’t get previous part working

Graded on test suite, manual tests, and style

❖ Exams: Midterm (12%) and Final (12%)
In-person; questions to validate concepts learned

❖ Effort, Participation, Altruism: 3%
Many ways to earn credit here, relatively lenient on this 9

CSE333, Fall 2023L01: Intro, C Refresher

Student Conduct

❖ Academic Integrity (read the full policy on the web)
I trust you implicitly and will follow up if that trust is violated
In short: don’t attempt to gain credit for something you didn’t do
and don’t help others do so either
This does not mean suffer in silence – learn from the course staff
and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

❖ If you find yourself in a situation where you are tempted
to perform academic misconduct, please reach out to
Chris to explain your situation instead

See the Extenuating Circumstances section of the syllabus

10

CSE333, Fall 2023L01: Intro, C Refresher

Deadlines (flexibility policy)

❖ Exercises
❖ Must be submitted via Gradescope by 10pm on due date
❖ Submissions will be accepted until 10am the next morning,

without penalty
❖ You will be awarded a ‘promptness bonus’ for consistently

meeting the original deadline

❖ Homework
❖ Must be submitted & tagged on Gitlab by 10pm on due date
❖ Submissions will be accepted up to two days later, without

penalty (weekends count as one day)
❖ You will be awarded a ‘promptness bonus’ for consistently

meeting the original deadline
11

CSE333, Fall 2023L01: Intro, C Refresher

Lecture Outline

❖ Course Policies
https://courses.cs.washington.edu/courses/cse333/23au/syllabus/
Summary here, but you must read the full details online

❖ Course Introduction
❖ C Reintroduction

12

CSE333, Fall 2023L01: Intro, C Refresher

Course Map: 100,000 foot view

13

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Fall 2023L01: Intro, C Refresher

Systems Programming

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

Programming: C / C++

Discipline: testing, debugging, performance analysis

Knowledge: long list of interesting topics
• Concurrency, OS interfaces and semantics, techniques for consistent

data management, distributed systems algorithms, …
• Most important: a deep(er) understanding of the “layer below”

14

CSE333, Fall 2023L01: Intro, C Refresher

Discipline?!?

❖ Cultivate good habits, encourage clean code
Coding style conventions
Unit testing, code coverage testing, regression testing
Documentation (code comments, design docs)
Code reviews

❖ Will take you a lifetime to learn, but oh-so-important,
especially for systems code

Avoid write-once, read-never code
Treat assignment submissions in this class as production code
• Comments must be updated, no commented-out code, no extra

(debugging) output

15

STYLE
TIP

CSE333, Fall 2023L01: Intro, C Refresher

Style Grading in 333

❖ A style guide is a “set of standards for the writing,
formatting, and design of documents” – in this case, code

❖ No style guide is perfect
Inherently limiting to coding as a form of expression/art
Rules should be motivated (e.g., consistency, performance,
safety, readability), even if not everyone agrees

❖ In 333, we will use a subset of the Google C++ Style Guide
Want you to experience adhering to a style guide
Hope you view these more as design decisions to be considered
rather than rules to follow to get a grade
We acknowledge that judgments of language implicitly encode
certain values and not others

16

CSE333, Fall 2023L01: Intro, C Refresher

Lecture Outline

❖ Course Policies
https://courses.cs.washington.edu/courses/cse333/23au/syllabus/
Summary here, but you must read the full details online

❖ Course Introduction
❖ C Reintroduction

Workflow, Variables, Functions

17

CSE333, Fall 2023L01: Intro, C Refresher

C

❖ Created in 1972 by Dennis Ritchie
Designed for creating system software
Portable across machine architectures
Most recently updated in 1999 (C99) and 2011 (C11)
• There’s also C17, which is a bug-fix version of C11.

❖ Characteristics
“Low-level” language that allows us to exploit underlying features
of the architecture – but easy to fail spectacularly (!)
Procedural (not object-oriented)
“Weakly-typed” or “type-unsafe”
Small, basic library compared to Java, C++, most others….

18

CSE333, Fall 2023L01: Intro, C Refresher

C Workflow
Editor (emacs, vi) or IDE (VS Code)

19

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries
LINK

CSE333, Fall 2023L01: Intro, C Refresher

C to Machine Code

20

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,
 int* dest) {
 *dest = x + y;
}

sumstore:
 addl %edi, %esi
 movl %esi, (%rdx)
 ret

Machine code
(sumstore.o)

400575: 01 fe
 89 32
 c3

C compiler
(gcc –c)

CSE333, Fall 2023L01: Intro, C Refresher

Generic C Program Layout

21

#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
 /* the innards */
}

/* define other functions */

STYLE
TIP

CSE333, Fall 2023L01: Intro, C Refresher

C Syntax: main

❖ To get command-line arguments in main, use:
int main(int argc, char* argv[])

❖ What does this mean?
argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).
argv is an array containing pointers to the arguments as strings

(more on pointers later)

❖ Example: $ foo hello 87
argc = 3
argv[0]="foo", argv[1]="hello", argv[2]="87"

22

int main(int argc, char* argv[])

$ foo hello 87

CSE333, Fall 2023L01: Intro, C Refresher

When Things Go South…

❖ Errors and Exceptions
C does not have exception handling (no try/catch)
Errors are returned as integer error codes from functions
• Standard codes found in stdlib.h:
EXIT_SUCCESS (usually 0) and EXIT_FAILURE (non-zero)

• Return value from main is a status code
Because of this, error handling is ugly and inelegant

❖ Crashes
If you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

23

STYLE
TIP

CSE333, Fall 2023L01: Intro, C Refresher

Java vs. C (351 refresher)
❖ Are Java and C mostly similar (S) or significantly different

(D) in the following categories?
List any differences you can recall (even if you put ‘S’)

24

Language Feature S/D Differences in C

Control structures S if-else if-else, switch, while, for
are all the same.

Primitive datatypes S/D S: same/similar names
D: char (ASCII, 1 byte), machine-dependent sizes, no
built-in boolean type, not initialized. Modifiers.

Operators S Almost all match. One notable difference is no >>> for
logical shift.

Casting D Java has type-safe casting, while C does not.

Arrays D Not objects; don’t know own length.

Memory management D Explicit memory management (malloc/free). No
automatic garbage collection.

CSE333, Fall 2023L01: Intro, C Refresher

Primitive Types in C

❖ Integer types
char, int

❖ Floating point
float, double

❖ Modifiers
short [int]
long [int, double]
signed [char, int]
unsigned [char, int]

25

C Data Type 32-bit 64-bit printf
char 1 1 %c

short int 2 2 %hd
unsigned short int 2 2 %hu

int 4 4 %d / %i
unsigned int 4 4 %u

long int 4 8 %ld
long long int 8 8 %lld

float 4 4 %f
double 8 8 %lf

long double 12 16 %Lf
pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Fall 2023L01: Intro, C Refresher

C99 Extended Integer Types

❖ Solves the conundrum of “how big is an long int?”

26

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
 int8_t a; // exactly 8 bits, signed
 int16_t b; // exactly 16 bits, signed
 int32_t c; // exactly 32 bits, signed
 int64_t d; // exactly 64 bits, signed
 uint8_t w; // exactly 8 bits, unsigned
 ...
}

STYLE
TIP

CSE333, Fall 2023L01: Intro, C Refresher

Basic Data Structures
❖ C does not support objects!!!

❖ Arrays are contiguous chunks of memory
Arrays have no methods and do not know their own length
Can easily run off ends of arrays in C – security bugs!!!

❖ Strings are null-terminated char arrays
Strings have no methods, but string.h has helpful utilities

❖ Structs are the most object-like feature, but are just
collections of fields – no “methods” or functions

27

x h e l l o \n \0char* x = "hello\n";

CSE333, Fall 2023L01: Intro, C Refresher

Function Definitions

❖ Generic format:

28

// sum of integers from 1 to max
int32_t sumTo(int32_t max) {
 int32_t i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }

 return sum;
}

returnType fname(type param1, …, type paramN) {
 // statements
}

CSE333, Fall 2023L01: Intro, C Refresher

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

29

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return EXIT_SUCCESS;
}

// sum of integers from 1 to max
int32_t sumTo(int32_t max) {
 int32_t i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

sum_badorder.c

Note: code examples from slides are posted on
the course website for you to experiment with!

CSE333, Fall 2023L01: Intro, C Refresher

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

30

// sum of integers from 1 to max
int32_t sumTo(int32_t max) {
 int32_t i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return EXIT_SUCCESS;
}

sum_betterorder.c

CSE333, Fall 2023L01: Intro, C Refresher

Solution 2: Function Declaration

❖ Teaches the compiler arguments and return types;
function definitions can then be in a logical order

Function comment usually by the prototype

31

sum_declared.c // sum of integers from 1 to max
int32_t sumTo(int32_t); // func prototype

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return EXIT_SUCCESS;
}

int32_t sumTo(int32_t max) {
 int32_t i, sum = 0;
 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

STYLE
TIP

CSE333, Fall 2023L01: Intro, C Refresher

Function Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

❖ Definition: the thing itself
e.g. code for function, variable definition that creates storage
Must be exactly one definition of each thing (no duplicates)

❖ Declaration: description of a thing
e.g. function prototype, external variable declaration
• Often in header files and incorporated via #include
• Should also #include declaration in the file with the actual

definition to check for consistency
Needs to appear in all files that use that thing
• Should appear before first use

32

CSE333, Fall 2023L01: Intro, C Refresher

Multi-file C Programs

33

void sumstore(int x, int y, int* dest) {
 *dest = x + y;
}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {
 int z, x = 351, y = 333;
 sumstore(x, y, &z);
 printf("%d + %d = %d\n", x, y, z);
 return 0;
}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

Note: not good
style. More on
multiple files in
later lecture

<- used

CSE333, Fall 2023L01: Intro, C Refresher

Compiling Multi-file Programs

❖ The linker combines multiple object files plus statically-
linked libraries to produce an executable

Includes many standard libraries (e.g. libc, crt1)
• A library is just a pre-assembled collection of .o files

34

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Fall 2023L01: Intro, C Refresher

Polling Question

❖ Which of the following statements is FALSE?
A. With the standard main() syntax, It is always safe

to use argv[0].
B. We can’t use uint64_t on a 32-bit machine

because there isn’t a C integer primitive of that
length.

C. Using function declarations is beneficial to both
single- and multi-file C programs.

D. When compiling multi-file programs, not all linking is
done by the Linker.

E. We’re lost…

35

Discuss on Ed!
PollEnv survey will posted to Ed after lecture.

CSE333, Fall 2023L01: Intro, C Refresher

To-do List
❖ Make sure you’re registered on Canvas, Ed Discussion,

Gradescope, and Poll Everywhere
All user IDs should be your uw.edu email address

❖ Explore the website thoroughly: http://cs.uw.edu/333
❖ Computer setup: CSE lab, attu, or CSE Linux VM
❖ Exercise 1 is out later today, due 10 pm on Friday Monday

Find exercise spec on website, submit via Gradescope
• Course “CSE 333” under “Fall 2023”, Assignment “Exercise 1”, then drag-n-

drop file(s)!
Sample solution will be posted Saturday Tuesday afternoon
Hint: look at documentation for stdlib.h, string.h, and
inttypes.h

❖ Homework 0 is out later today

36

http://cs.uw.edu/333
http://www.cplusplus.com/reference/cstdlib/
http://www.cplusplus.com/reference/cstring/
http://www.cplusplus.com/reference/cinttypes/

