
CSE333, Fall 2023L12: C++ Heap

C++ Heap
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu
Yegor Kuznetsov

CSE333, Fall 2023L12: C++ Heap

Relevant Course Information

v Exercise 6 due tonight
v Exercise 7 due next Wednesday

§ Will build on Exercise 6

v Homework 2 due next Monday (10/30)
§ Hw2 partner declaration due this Thursday (10/26)

v Midterm this Friday in class (10/27)
§ A single 3”x5” index card with handwritten notes is allowed.

2

CSE333, Fall 2023L12: C++ Heap

Lecture Outline

v Using the Heap
§ new / delete / delete[]

3

CSE333, Fall 2023L12: C++ Heap

C++11 nullptr

v C and C++ have long used NULL as a pointer value that
references nothing

v C++11 introduced a new literal for this: nullptr
§ New reserved word
§ Interchangeable with NULL for all practical purposes, but it has

type T* for any/every T, and is not an integer value
• Avoids funny edge cases (see C++ references for details)
• Still can convert to/from integer 0 for tests, assignment, etc.

§ Advice: prefer nullptr in C++11 code
• Though NULL will also be around for a long, long time

4

STYLE
TIP

CSE333, Fall 2023L12: C++ Heap

new/delete

v To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h
§ You can use new to allocate an object (e.g., new Point)
§ You can use new to allocate a primitive type (e.g., new int)

v To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h
§ Don’t mix and match!

• Never free() something allocated with new
• Never delete something allocated with malloc()
• Careful if you’re using a legacy C code library or module in C++

5

CSE333, Fall 2023L12: C++ Heap

new/delete Behavior

v new behavior:
§ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

§ If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

§ You don’t need to check that new returns nullptr
• When an error is encountered, an exception is thrown (that we won’t

worry about)

v delete behavior:
§ If you delete already deleted memory, then you will get

undefined behavior (same as when you double free in C)

6

CSE333, Fall 2023L12: C++ Heap

new/delete Example

7

#include "Point.h"

... // definitions of AllocateInt() and AllocatePoint()

int main() {
 Point* x = AllocatePoint(1, 2);
 int* y = AllocateInt(3);

 cout << "x's x_ coord: " << x->get_x() << endl;
 cout << "y: " << y << ", *y: " << *y << endl;

 delete x;
 delete y;
 return EXIT_SUCCESS;
}

int* AllocateInt(int x) {
 int* heapy_int = new int;
 *heapy_int = x;
 return heapy_int;
}

Point* AllocatePoint(int x, int y) {
 Point* heapy_pt = new Point(x,y);
 return heapy_pt;
}

heappoint.cc

CSE333, Fall 2023L12: C++ Heap

Dynamically Allocated Arrays

v To dynamically allocate an array:
§ Default initialize:

v To dynamically deallocate an array:
§ Use delete[] name;
§ It is incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new type[size];
or new type;
– Especially inside a function where a pointer parameter could point to a

single item or an array and there’s no way to tell which!
• Result of wrong delete is undefined behavior

8

type* name = new type[size];

delete[] name;

CSE333, Fall 2023L12: C++ Heap

Arrays Example (primitive)

9

#include "Point.h"

int main() {
 int stack_int;
 int* heap_int = new int;
 int* heap_int_init = new int(12);

 int stack_arr[3];
 int* heap_arr = new int[3];

 int* heap_arr_init_val = new int[3]();
 int* heap_arr_init_lst = new int[3]{4, 5}; // C++11

 ...

 delete heap_int; //
 delete heap_int_init; //
 delete heap_arr; //
 delete[] heap_arr_init_val; //

 return EXIT_SUCCESS;
}

arrays.cc

CSE333, Fall 2023L12: C++ Heap

Arrays Example (class objects)

10

#include "Point.h"

int main() {
 ...

 Point stack_pt(1, 2);
 Point* heap_pt = new Point(1, 2);

 Point* heap_pt_arr_err = new Point[2];

 Point* heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};
 // C++11
 ...

 delete heap_pt;
 delete[] heap_pt_arr_init_lst;

 return EXIT_SUCCESS;
}

arrays.cc

CSE333, Fall 2023L12: C++ Heap

malloc vs. new
malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything arrays, structs, objects,
primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

11

CSE333, Fall 2023L12: C++ Heap

§ If there is an error,
how would you fix it?

A. Bad dereference
B. Bad delete
C. Memory leak
D. “Works” fine
E. We’re lost…

12

pollev.com/cse333

What will happen when we invoke Bar()?
Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
 foo_ptr_ = new int;
 *foo_ptr_ = val;
}

Foo& Foo::operator=(const Foo& rhs) {
 delete foo_ptr_;
 Init(*(rhs.foo_ptr_));
 return *this;
}

void Bar() {
 Foo a(10);
 Foo b(20);
 a = a;
}

CSE333, Fall 2023L12: C++ Heap

Rule of Three, Revisited

v Now what will happen when we invoke Bar()?
§ If there is an error,

how would you fix it?

13

Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
 foo_ptr_ = new int;
 *foo_ptr_ = val;
}

Foo& Foo::operator=(const Foo& rhs) {
 if (&rhs != this) {
 delete foo_ptr_;
 Init(*(rhs.foo_ptr_));
 }
 return *this;
}

void Bar() {
 Foo a(10);
 Foo b = a;
}

CSE333, Fall 2023L12: C++ Heap

Extra Exercise #1

v Write a C++ function that:
§ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

§ Uses new to dynamically allocate an array of pointers to strings
• Assign each entry of the array to a string allocated using new

§ Cleans up before exiting
• Use delete to delete each allocated string
• Uses delete[] to delete the string pointer array
• (whew!)

14

CSE333, Fall 2023L12: C++ Heap

An extra example for practice with class design and heap-
allocated data: a C-string wrapper class classed Str.

15

CSE333, Fall 2023L12: C++ Heap

Heap Member (extra example)

v Let’s build a class to simulate some of the functionality of
the C++ string
§ Internal representation: c-string to hold characters

v What might we want to implement in the class?

16

CSE333, Fall 2023L12: C++ Heap

Str Class

17

#include <iostream>
using namespace std; // should replace this

class Str {
 public:
 Str(); // default ctor
 Str(const char* s); // c-string ctor
 Str(const Str& s); // copy ctor
 ~Str(); // dtor

 int length() const; // return length of string
 char* c_str() const; // return a copy of st_
 void append(const Str& s);

 Str& operator=(const Str& s); // string assignment

 friend std::ostream& operator<<(std::ostream& out, const Str& s);

 private:
 char* st_; // c-string on heap (terminated by '\0')
}; // class Str

Str.h

CSE333, Fall 2023L12: C++ Heap

Str::append (extra example)

v Complete the append() member function:
§ char* strncpy(char* dst, char* src, size_t num);
§ char* strncat(char* dst, char* src, size_t num);

18

#include <cstring>
#include "Str.h"
// append contents of s to the end of this string
void Str::append(const Str& s) {

}

CSE333, Fall 2023L12: C++ Heap

Clone
v C++11 style guide tip:

§ If you disable them, then you instead may want an explicit
“Clone” function that can be used when occasionally needed

19

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 void Clone(const Point& copy_from_me);
 ...
 Point(Point& copyme) = delete; // disable cctor
 Point& operator=(Point& rhs) = delete; // disable "="
 private:
 ...
}; // class Point

Point_2011.h

Point x(1, 2); // OK
Point y(3, 4); // OK
x.Clone(y); // OK

sanepoint.cc

