
CSE333, Fall 2023L15: C++ Standard Template Library

C++ STL (part 1 of 2)
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu
Yegor Kuznetsov

CSE333, Fall 2023L15: C++ Standard Template Library

Relevant Course Information

v Exercise 7 due tonight by 10pm

v Exercise 8 due Friday by 10pm

v Homework 2 was due last night
§ Don’t forget to clone your repo to double-/triple-/quadruple-

check compilation!

v Homework 3 will be released by tomorrow, due 11/22

2

CSE333, Fall 2023L15: C++ Standard Template Library

Lecture Outline

v STL overview
v STL iterators, algorithms (next lecture)

3

CSE333, Fall 2023L15: C++ Standard Template Library

C++’s Standard Library

v C++’s Standard Library consists of four major pieces:

1) The entire C standard library

2) C++’s input/output stream library
• std::cin, std::cout, stringstreams, fstreams, etc.

3) C++’s standard template library (STL) ☜
• Containers, iterators, algorithms (sort, find, etc.), numerics

4) C++’s miscellaneous library
• Strings, exceptions, memory allocation, localization

4

CSE333, Fall 2023L15: C++ Standard Template Library

STL Containers J

v A container is an object that stores (in memory) a
collection of other objects (elements)
§ Implemented as class templates, so hugely flexible
§ More info in C++ Primer §9.2, 11.2

v Several different classes of container
§ Sequence containers (vector, deque, list, ...)
§ Associative containers (set, map, multiset, multimap,
bitset, ...)

§ Differ in algorithmic cost and supported operations

5

CSE333, Fall 2023L15: C++ Standard Template Library

STL Containers L

v STL containers store by value, not by reference
§ When you insert an object, the container makes a copy
§ If the container needs to rearrange objects, it makes copies

• e.g., if you sort a vector, it will make many, many copies
• e.g., if you insert into a map, that may trigger several copies

§ What if you don’t want this (disabled copy constructor or copying
is expensive)?
• You can insert a wrapper object with a pointer to the object

– We’ll learn about these “smart pointers” soon

6

CSE333, Fall 2023L15: C++ Standard Template Library

Our Tracer Class

v Wrapper class for an unsigned int value_
§ Also holds unique unsigned int id_ (increasing from 0)
§ Default ctor, cctor, dtor, op=, op< defined
§ friend function operator<< defined
§ Private helper method PrintID() to return
"(id_,value_)" as a string

§ Class and member definitions can be found in Tracer.h and
Tracer.cc

v Useful for tracing behaviors of containers
§ All methods print identifying messages
§ Unique id_ allows you to follow individual instances

7

CSE333, Fall 2023L15: C++ Standard Template Library

STL vector

v A generic, dynamically resizable array
§ https://cplusplus.com/reference/vector/vector/
§ Elements are store in contiguous memory locations

• Elements can be accessed using pointer arithmetic if you’d like
• Random access is O(1) time

§ Adding/removing from the end is cheap (amortized constant
time)

§ Inserting/deleting from the middle or start is expensive (linear
time)

8

https://cplusplus.com/reference/vector/vector/

CSE333, Fall 2023L15: C++ Standard Template Library

vector/Tracer Example

9

vectorfun.cc
#include <iostream>
#include <vector>
#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {
 Tracer a, b, c;
 vector<Tracer> vec;

 cout << "vec.push_back " << a << endl;
 vec.push_back(a);
 cout << "vec.push_back " << b << endl;
 vec.push_back(b);
 cout << "vec.push_back " << c << endl;
 vec.push_back(c);

 cout << "vec[0]" << endl << vec[0] << endl;
 cout << "vec[2]" << endl << vec[2] << endl;

 return EXIT_SUCCESS;
}

CSE333, Fall 2023L15: C++ Standard Template Library

10

pollev.com/cse333

How many Tracer objects created?
#include <iostream>
#include <vector>
#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {
 Tracer a, b, c;
 vector<Tracer> vec;

 cout << "vec.push_back " << a << endl;
 vec.push_back(a);
 cout << "vec.push_back " << b << endl;
 vec.push_back(b);
 cout << "vec.push_back " << c << endl;
 vec.push_back(c);

 cout << "vec[0]" << endl << vec[0] << endl;
 cout << "vec[2]" << endl << vec[2] << endl;

 return EXIT_SUCCESS;
}

CSE333, Fall 2023L15: C++ Standard Template Library

Extra Exercise #1

v Using the Tracer.h/.cc files from lecture:
§ Construct a vector of lists of Tracers

• i.e., a vector container with each element being a list of
Tracers

§ Observe how many copies happen J
• Use the sort algorithm to sort the vector
• Use the list.sort() function to sort each list

13

