
CSE333, Fall 2023L18: C++ Inheritance I

C++ Inheritance I
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu
Yegor Kuznetsov

CSE333, Fall 2023L18: C++ Inheritance I

Relevant Course Information

v Exercise 9 released (due 11/15)
§ C++ smart pointers and inheritance

v No lecture this Friday (11/10; Veterans Day)

v Graded midterms released today
§ Ed announcement will go out later today
§ One question turned into a bonus
§ Mean: ~75.3 %, StdDev: ~18.3%
§ Regrade request window will open Thursday, close Saturday

2

CSE333, Fall 2023L18: C++ Inheritance I

Overview of Next Two Lectures

v C++ inheritance
§ Review of basic idea (pretty much the same as in Java)
§ What’s different in C++ (compared to Java)

• Static vs. dynamic dispatch – virtual functions and vtables (optional)
• Pure virtual functions, abstract classes, why no Java “interfaces”
• Assignment slicing, using class hierarchies with STL

§ Casts in C++

v Reference: C++ Primer, Chapter 15

3

CSE333, Fall 2023L18: C++ Inheritance I

Lecture Outline

v Inheritance motivation & C++ Syntax
v Polymorphism & Dynamic Dispatch
v Virtual Tables & Virtual Table Pointers

4

CSE333, Fall 2023L18: C++ Inheritance I

Stock Portfolio Example

v A portfolio represents a person’s financial investments
§ Each asset has a cost (i.e., how much was paid for it) and a market

value (i.e., how much it is worth)
• The difference between the cost and market value is the profit (or

loss)
§ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g., “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments
• Cash is an asset that never incurs a profit or loss

5(Credit: thanks to Marty Stepp for this example)

CSE333, Fall 2023L18: C++ Inheritance I

Design Without Inheritance

v One class per asset type:

§ Redundant!
§ Cannot treat multiple investments together

• e.g., can’t have an array or vector of different assets

v See sample code in initial/ directory
6

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Fall 2023L18: C++ Inheritance I

Inheritance

v A parent-child “is-a” relationship between classes
§ A child (derived class) extends a parent (base class)

v Terminology:

§ Mean the same things. You’ll hear both.

7

Java C++
Superclass Base Class
Subclass Derived Class

CSE333, Fall 2023L18: C++ Inheritance I

Inheritance

v A parent-child “is-a” relationship between classes
§ A child (derived class) extends a parent (base class)

v Benefits:
§ Code reuse

• Children can automatically inherit code from parents
§ Polymorphism

• Ability to redefine existing behavior but preserve the interface
• Children can override the behavior of the parent
• Others can make calls on objects without knowing which part of the

inheritance tree it is in

§ Extensibility
• Children can add behavior

8

CSE333, Fall 2023L18: C++ Inheritance I

Design With Inheritance

9

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Asset (abstract)

GetMarketValue()
GetProfit()
GetCost()

CSE333, Fall 2023L18: C++ Inheritance I

Like Java: Access Modifiers

v public: visible to all other classes
v protected: visible to current class and its derived

 classes
v private: visible only to the current class

v Use protected for class members only when
§ Class is designed to be extended by derived classes
§ Derived classes must have access but clients should not be

allowed

10

CSE333, Fall 2023L18: C++ Inheritance I

Class Derivation List

v Comma-separated list of classes to inherit from:

§ Focus on single inheritance, but multiple inheritance possible

v Almost always you will want public inheritance
§ Acts like extends does in Java
§ Any member that is non-private in the base class is the same in

the derived class; both interface and implementation inheritance
• Except that constructors, destructors, copy constructor, and

assignment operator are never inherited

11

#include "BaseClass.h"

class Name : public BaseClass {
 ...
};

CSE333, Fall 2023L18: C++ Inheritance I

Back to Stocks

 BASE DERIVED

12

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Fall 2023L18: C++ Inheritance I

Back to Stocks

v A derived class:
§ Inherits the behavior and state (specification) of the base class
§ Overrides some of the base class’ member functions (opt.)
§ Extends the base class with new member functions, variables

(opt.)

13

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Fall 2023L18: C++ Inheritance I

Lecture Outline

v Inheritance motivation & C++ Syntax
v Polymorphism & Dynamic Dispatch
v Virtual Tables & Virtual Table Pointers

14

CSE333, Fall 2023L18: C++ Inheritance I

Polymorphism in C++

v In Java: PromisedType var = new ActualType();
§ var is a reference (different term than C++ reference) to an

object of ActualType on the Heap
§ ActualType must be the same class or a subclass of
PromisedType

v In C++: PromisedType* var_p = new ActualType();
§ var_p is a pointer to an object of ActualType on the Heap
§ ActualType must be the same or a derived class of
PromisedType

§ (also works with references)

§ PromisedType defines the interface (i.e., what can be called on
var_p), but ActualType may determine which version gets
invoked

15

CSE333, Fall 2023L18: C++ Inheritance I

Dynamic Dispatch (like Java)

v Usually, when a derived function is available for an object,
we want the derived function to be invoked
§ This requires a run time decision of what code to invoke

v A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type
§ Can determine what to invoke from the object itself

v Example:
§ void PrintStock(Stock* s) { s->Print(); }
§ Calls the appropriate Print() without knowing the actual type

of *s, other than it is some sort of Stock
16

CSE333, Fall 2023L18: C++ Inheritance I

Dynamic Dispatch Example

v When a member function is invoked on an object:
§ The most-derived function accessible to the object’s visible type is

invoked (decided at run time based on actual type of the object)

17

double DividendStock::GetMarketValue() const {
 return get_shares() * get_share_price() + dividends_;
}

double "DividendStock"::GetProfit() const { // inherited
 return GetMarketValue() – GetCost();
}

double Stock::GetMarketValue() const {
 return get_shares() * get_share_price();
}

double Stock::GetProfit() const {
 return GetMarketValue() – GetCost();
}

DividendStock.cc

Stock.cc

CSE333, Fall 2023L18: C++ Inheritance I

Dynamic Dispatch Example

18

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes DividendStock::GetMarketValue(),
// since that is the most-derived accessible function.
s->GetProfit();

CSE333, Fall 2023L18: C++ Inheritance I

Requesting Dynamic Dispatch (C++)

v Prefix the member function declaration with the
virtual keyword
§ Derived/child functions don’t need to repeat virtual, but was

traditionally good style to do so
§ This is how method calls work in Java (no virtual keyword needed)
§ You almost always want functions to be virtual

v override keyword (C++11)
§ Tells compiler this method should be overriding an inherited

virtual function – always use if available
§ Prevents overloading vs. overriding bugs

v Both of these are technically optional in derived classes
§ Be consistent and follow local conventions (Google Style Guide

says no virtual if override)
19

CSE333, Fall 2023L18: C++ Inheritance I

Most-Derived

20

class A {
 public:
 // Foo will use dynamic dispatch
 virtual void Foo();
};

class B : public A {
 public:
 // B::Foo overrides A::Foo
 virtual void Foo();
};

class C : public B {
 // C inherits B::Foo()
};

void Bar() {
 A* a_ptr;
 C c;

 a_ptr = &c;

 // Whose Foo() is called?
 a_ptr->Foo();
}

CSE333, Fall 2023L18: C++ Inheritance I

21

pollev.com/cse333

Whose Foo() is called?

 Q1 Q2
A. A B
B. A D
C. B B
D. B D
E. We’re lost…

class A {
 public:
 virtual void Foo();
};

class B : public A {
 public:
 virtual void Foo();
};

class C : public B {
};

class D : public C {
 public:
 virtual void Foo();
};

class E : public C {
};

void Bar() {
 A* a_ptr;
 C c;
 E e;

 // Q1:
 a_ptr = &c;
 a_ptr->Foo();

 // Q2:
 a_ptr = &e;
 a_ptr->Foo();
}

CSE333, Fall 2023L18: C++ Inheritance I

Lecture Outline

v Inheritance motivation & C++ Syntax
v Polymorphism & Dynamic Dispatch
v Virtual Tables & Virtual Table Pointers (next time)

22

CSE333, Fall 2023L18: C++ Inheritance I

How Can This Possibly Work?

v The compiler produces Stock.o from just Stock.cc
§ It doesn’t know that DividendStock exists during this process
§ So then how does the emitted code know to call
Stock::GetMarketValue() or
DividendStock::GetMarketValue()
or something else that might not exist yet?
• Function pointers!!!

23

double Stock::GetMarketValue() const {
 return get_shares() * get_share_price();
}

double Stock::GetProfit() const {
 return GetMarketValue() – GetCost();
} Stock.cc

virtual double Stock::GetMarketValue() const;
virtual double Stock::GetProfit() const;

Stock.h

CSE333, Fall 2023L18: C++ Inheritance I

vtables and the vptr

v If a class contains any virtual methods, the compiler
emits:
§ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class
• The pointers in the vtable point to the most-derived function for that

class

§ A virtual table pointer (vptr) for each object instance
• A pointer to a virtual table as a “hidden” member variable
• When the object’s constructor is invoked, the vptr is initialized to

point to the vtable for the object’s class
• Thus, the vptr “remembers” what class the object is

24

CSE333, Fall 2023L18: C++ Inheritance I

code for Point()

code for Point’s samePlace()
Point vtable:

xvtable ptr yheader

Point object

p ???

351 Throwback: Dynamic Dispatch

25

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vtable[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

xvtable yheader

3DPoint object
z

3DPoint vtable:

CSE333, Fall 2023L18: C++ Inheritance I

vtable/vptr Example

26

class Base {
 public:
 virtual void F1();
 virtual void F2();
};

class Der1 : public Base {
 public:
 virtual void F1();
};

class Der2 : public Base {
 public:
 virtual void F2();
};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->F1(); //
b0ptr->F2(); //

b1ptr->F1(); //
b1ptr->F2(); //

b2ptr->F1(); //
b2ptr->F2(); //

d2.F1(); //

CSE333, Fall 2023L18: C++ Inheritance I

vtable/vptr Example

27

Base b;
Der1 d1;
Der2 d2;

Base* b2ptr = &d2;

b2ptr->F1();
// b2ptr -->
// d2.vptr -->
// Der2.vtable.F1 -->
// Base::F1()

d2.F1();
// d2.vptr -->
// Der2.vtable.F1 -->
// Base::F1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base
F1()
F2()

Der1
F1()
F2()

Der2
F1()
F2()

Base::F1()
 push %rbp
 ...

Base::F2()
 push %rbp
 ...

Der1::F1()
 push %rbp
 ...

Der2::F2()
 push %rbp
 ...

CSE333, Fall 2023L18: C++ Inheritance I

Let’s Look at Some Actual Code

v Let’s examine the following code using objdump
§ g++ -Wall –g –std=c++17 -o vtable vtable.cc

§ objdump -CDS vtable > vtable.d

28

class Base {
 public:
 virtual void f1();
 virtual void f2();
};

class Der1 : public Base {
 public:
 virtual void f1();
};

int main(int argc, char** argv) {
 Der1 d1;
 Base* bptr = &d1;
 bptr->f1();
 d1.f1();
}

vtable.cc

