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Relevant Course Information

+ Exercise 9 is due Wednesday (11/15)

+» Homework 3 is due next Thursday (11/23)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

= |Late submission deadline (no penalty): 11/26 before 10pm

+ Lecture on “Intro to Networking” recording posted this
evening

= We'll start on IP/DNS/Client-side networking on Wednesday
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Lecture Outline

D)

>

» C++ Inheritance

= Abstract Classes

= Static Dispatch

= Constructors and Destructors

= Assignment
+ C++ Casting
+ C++ Conversions

>

« Reference: C++ Primer, Chapter 15
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Abstract Classes

+« Sometimes we want to include a function in a class but
only implement it in derived classes
" |n Java, we would use an abstract method

IH

" |n C++, we use a “pure virtual” function

+ Example: [ virtual string Noise ()

0;

+ A class containing any pure virtual methods is abstract
" You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

= Pure type specification without implementations
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Reminder: virtual is “sticky”

« IfX::F () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

= The vtables will include function pointers for (the correct) F

« F () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code
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What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of

the class’ method in the . text segment
- Based on the compile-time visible type of the callee

= This is different than Java

(class Derived : public Base { ... };
» Derived: :Foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;

Base* bp = &d;
dp->Foo () ; » Base: :Foo()
bp->Foo () ;

return EXIT SUCCESS;
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Static Dispatch Example

+ Removed virtual on methods: Stock.h

double Stock::GetMarketValue () const;
double Stock::GetProfit () const;

DividendStock dividend() ;
DividendStock* ds = &dividend;
Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit () invokes Stock::GetMarketValue /().
s—->GetProfit () ;

// invokes Stock::GetProfit (), since that method 1is inherited.
// Stock::GetProfit () invokes Stock::GetMarketValue/().
ds->GetProfit () ;




YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Why Not Always Use virtual?

+» Two (fairly uncommon) reasons:

= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« IfF () calls G () inclass Xand G is not virtual, we're guaranteed to
call X: :G () and not G () in some subclass

— Particularly useful for framework design
+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

+ In C++ and C#, you can pick what you want
= Omitting virtual can cause obscure bugs
= (Most of the time, you want member function to be virtual)
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Mixed Dispatch

« Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g., ob7j .Fcn () ), usually optimized into a
hard-coded function call at compile time
= |f called via a pointer or reference:

PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1is called?

Is Fen () Yes Is PromisedT: :Fen () Yes Dynamic dispatch of
: ) marked virtual in . ,
defined in ; . . P most-derived version of
) PromisedT orin classes it ..
PromisedT? . Fcn() visible to ActualT
derives from?

[ o | wo

Compiler Static dispatch of
Error PromisedT::Fcn()

10
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Mixed Dispatch Example

mixed.cc

[(class A {
public:
// ml will use static dispatch
void M1 () { cout << "al, "; }
// m2 will use dynamic dispatch

virtual void M2 () { cout << "a2";
§ e
class B public A {
public:

void M1 () { cout << "bl, "; }

// m2 is still virtual by default
void M2 () { cout << "b2"; }

J7

}

~\

(void main (int argc, B
char** argv) {
A ay
B b;
A* a ptr a = &a;
A* a ptr b = &b;
B* b ptr a = &a;
B* b ptr b = &b;
a ptr a->M1(); //
a ptr a->M2(); //
a ptr b->M1(); //
a ptr b->M2(); //
b ptr b->M1(); //
b ptr b->M2(); //
\} J

11
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Lecture Outline

>

+» C++ Inheritance
= Abstract Classes
= Static Dispatch
= Constructors and Destructors
= Assighment

+ C++ Casting
< C++ Conversions

>

« Reference: C++ Primer, Chapter 15
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Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+» Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

13
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Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

- You can use the initialization list of the derived class to specify which
base class constructor to use

14
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badctor.cc goodctor.cc
((class Base { // no default ctor B (// has default ctor N
public: class Base {
Base (int yi) v(yi) { } public:
int y; int y;
Y i
// Compiler error when you try to // works now
// lnstantiate a Derl, as the class Derl public Base {
// synthesized default ctor needs public:
// to invoke Base's default ctor. int z;
class Derl public Base { s
public:
T // still works
} class Der?2 public Base {
public:
class Der?2 public Base { Der2 (int zi) z(zi) { }
public: int z;
Der2 (int yi, 1int zi) \}; y

Base (yi), z(zi) { }
int z;

bg

.

CSE333, Fall 2023
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Destructors and Inheritance

« Destructor of a derived
class:
= First runs body of the dtor

= Then invokes of the dtor
of the base class

+ Static dispatch of
destructors is almost
always a mistake!

" Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

CSE333, Fall 2023

[
STYLE
\

TIP
baddtor.céy

-
class Base {

[

class Derl

Base* bOptr =
Base* blptr =

delete bOptr; //
delete blptr; //

public:
Base () { x = new 1int; }
~Base () { delete x; }
int* x;

: public Base {

public:
Derl() { y = new int; }
~Derl () { delete y; 1}
int* y;
}i
void Foo () {

new Base;
new Derl;

~N

16
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Assighment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class

= Known as object slicing

- It’s legal since b d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

L19: C++ Inheritance Il, Casts
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slicing.cc

-
class Base

public:
Base (int
int x;

b g

x1)

class Derl :

public:
Derl (int
int y;

P E

void Foo ()
Base b (1
Derl d(2

d = b;
b = d;

b

yi)

)
)

//
//

{

o x(x1i) { }

public Base {

: Base (16), y(yi) { }

\

17
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STL and Inheritance

+ Recall: STL containers store copies of values

= What happens when we want to store mixes of object types in a
single container? (e.g., Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 11i;

1i.push back(s); // OK
li.push back(ds); // OUCH!

return EXIT SUCCESS;

18
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STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL

containers
= No slicing! ©
" sort () doesthe wrong thing ®

"= You have to remember to de 1l et e your objects before
destroying the container ®
- Unless you use smart pointers!

19
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Lecture Outline

+» C++ Inheritance
= Abstract Classes

= Static Dispatch
= Constructors and Destructors

X/
>

= Assignment
« C++ Casting
<+ C++ Conversions

X/
>

» Reference: C++ Primer §4.11.3, 19.2.1

20
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Explicit Casting in C

22 Simplesyntax:[lhs = (new type) rhs;
+» Used to:

= Convert between pointers of arbitrary type
- Doesn’t change the data, but treats it differently

= Forcibly convert a primitive type to another
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear

" You should not use C-style casting in C++.

21
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Casting in C++ I

« C++ provides an alternative casting style that is more
informative:
" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)
+ Always use these in C++ code

" |ntentis clearer
= Easier to find in code via searching

22
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static_cast

L19: C++ Inheritance Il, Casts

% statlic cast canconvert:

= Pointers to classes of related type

_ _ public:
- Compiler error if classes are not related float x;
- Dangerous to cast down a class hierarchy bi
" Casting between void* and T* class C : public B {
public:
" Non-pointer conversion char x;
- e.g., floattoint . L 2
. . void Foo () {
¢ static castlis B b; C c;
checked at compile time // compiler error
A* aptr = static cast<A*>(&b);
// OK
B* bptr = static cast<B*>(&c);
// compiles, but dangerous

CSE333, Fall

staticcast.cc

2023

rclass A |
public:
int x;

b g

class B {

C*

cptr = static cast<C*>(&b);

23
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dynamic cast

» dynamic cast can convert:

= Pointers to classes of related type

CSE333, Fall 2023

dynamiccast.cc

class Base {

public:

virtual void Foo () { }

float x;
b g

class Derl

public Base {

= References to classes of related type public:
: . char x;
» dynamic cast ischecked atboth |,.

compile time and ol e ) I w
run time Base b; Derl d;
= Casts between // OK (run-time check passes)

unrelated classes fail Base* bptr = dynamic_cast<Base*> (&d) ;

o L | — .

atconwpnetnne assert (bptr !'= nullptr);

® Casts from base to // OK (run-time check passes)

derived fail at run
time if the pointed-to
object is not the
derived type

assert (dptr

bptr = &b;

assert (dptr

Derl* dptr =

// Run-time check fails,

dynamic cast<Derl*> (bptr);
!= nullptr);

returns nullptr

dptr = dynamic cast<Derl*> (bptr);
!= nullptr);
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const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

[ void Foo (int* x) |
*x++;

}

vold Bar (const int* x) {
Foo (x) ; // compller error
Foo (const cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
Bar (&x) ;
return EXIT SUCCESS;
}

\. J

25
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reinterpret cast

+ reinterpret cast casts between incompatible types

= |ow-level reinterpretation of the bit pattern
" e.g., storing a pointer in an 1nt, or vice-versa

- Works as long as the integral type is “wide” enough
" Converting between incompatible pointers

- Dangerous (!)

 This is used (carefully) in hw3

= Use any other C++ cast if you can!

26
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Casting Style Considerations LY

+» From the “Casting” and “Run-Time Type Information
(RTTI)” sections of the Google C++ Style Guide:

= When the logic of a program guarantees that a given instance of a
base class is, in fact, an instance of a particular derived class, then
a dynamic cast may be used freely on the object.
« Usuallyone canusea static cast asan alternative in such
situations
" Onlyuse reinterpret cast if you know what you are doing
and you understand the aliasing issues

- For unsafe conversions of pointer types to and from integer and other
pointer types, including void*

27
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Lecture Outline

+» C++ Inheritance
= Abstract Classes

= Static Dispatch
= Constructors and Destructors

X/
>

= Assignment
+ C++ Casting
+ C++ Conversions

X/
>

» Reference: C++ Primer §4.11.3, 19.2.1

28
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Implicit Conversion

+ The compiler tries to infer some kinds of conversions

= When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

rvoid Bar (std::string x);

void Foo () {
int x = 5.7; // conversion, float -> int
char ¢ = x; // conversion, int -> char
Bar ("hi") ; // conversion, (const char*) -> string

}

. J

29
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Sneaky Implicit Conversions

%+ (const char*)to string conversion?

= |f a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

= At most, one user-defined implicit conversion will happen

- Cando int = Foo, butnot int - Foo — RBaz

class Foo {

public:
Foo(int x1i) : x(x1i) { }
int x;

bg

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // equivalent to return Bar (Foo (5));

) ) 30
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Avoiding Sneaky Implicits Iy

+ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path
= Usually a good idea

[ class Foo {

public:
explicit Foo(int xi) : x(x1i) { 1}
int x;

bg

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

J 31
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Extra Exercise #1

+ Design a class hierarchy to represent shapes
= e.g., Circle, Triangle, Square

+ Implement methods that:

Construct shapes

Move a shape (i.e., add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Fall 2023
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Extra Exercise #2

« Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

= Constructs a vector of shapes

L)

= Sorts the vector according to the area of the shape
" Prints out each member of the vector

<« Notes:

L)

= Avoid slicing!
" Make sure the sorting works properly!

33



