YA/ UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casts

CSE333, Fall 2023

C++ Inheritance Il, Casts (Wrap-up)

CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski
Yuquan Deng
Noa Ferman
James Froelich
Hannah Jiang
Yegor Kuznetsov

Humza Lala

Alan Li

Leanna Mi Nguyen
Chanh Truong
Jennifer Xu

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Relevant Course Information

+ Exercise 9 is due Wednesday (11/15)

+» Homework 3 is due next Thursday (11/23)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

= |Late submission deadline (no penalty): 11/26 before 10pm

+ Lecture on “Intro to Networking” recording posted this
evening

= We'll start on IP/DNS/Client-side networking on Wednesday

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casts CSE333, Fall 2023

Lecture Outline

D)

>

» C++ Inheritance

= Abstract Classes

= Static Dispatch

= Constructors and Destructors

= Assignment
+ C++ Casting
+ C++ Conversions

>

« Reference: C++ Primer, Chapter 15

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Abstract Classes

+« Sometimes we want to include a function in a class but
only implement it in derived classes
" |n Java, we would use an abstract method

IH

" |n C++, we use a “pure virtual” function

+ Example: [virtual string Noise ()

0;

+ A class containing any pure virtual methods is abstract
" You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

= Pure type specification without implementations

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Reminder: virtual is “sticky”

« IfX::F () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

= The vtables will include function pointers for (the correct) F

« F () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of

the class’ method in the . text segment
- Based on the compile-time visible type of the callee

= This is different than Java

(class Derived : public Base { ... };
» Derived: :Foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;

Base* bp = &d;
dp->Foo () ; » Base: :Foo()
bp->Foo () ;

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Static Dispatch Example

+ Removed virtual on methods: Stock.h

double Stock::GetMarketValue () const;
double Stock::GetProfit () const;

DividendStock dividend() ;
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit () invokes Stock::GetMarketValue /().
s—->GetProfit () ;

// invokes Stock::GetProfit (), since that method 1is inherited.
// Stock::GetProfit () invokes Stock::GetMarketValue/().
ds->GetProfit () ;

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Why Not Always Use virtual?

+» Two (fairly uncommon) reasons:

= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« IfF () calls G () inclass Xand G is not virtual, we're guaranteed to
call X: :G () and not G () in some subclass

— Particularly useful for framework design
+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

+ In C++ and C#, you can pick what you want
= Omitting virtual can cause obscure bugs
= (Most of the time, you want member function to be virtual)

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Mixed Dispatch

« Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g., ob7j .Fcn ()), usually optimized into a
hard-coded function call at compile time
= |f called via a pointer or reference:

PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1is called?

Is Fen () Yes Is PromisedT: :Fen () Yes Dynamic dispatch of
:) marked virtual in . ,
defined in ; . . P most-derived version of
) PromisedT orin classes it ..
PromisedT? . Fcn() visible to ActualT
derives from?

[o | wo

Compiler Static dispatch of
Error PromisedT::Fcn()

10

YA/ UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casts

CSE333, Fall 2023

Mixed Dispatch Example

mixed.cc

[(class A {
public:
// ml will use static dispatch
void M1 () { cout << "al, "; }
// m2 will use dynamic dispatch

virtual void M2 () { cout << "a2";
§ e
class B public A {
public:

void M1 () { cout << "bl, "; }

// m2 is still virtual by default
void M2 () { cout << "b2"; }

J7

}

~\

(void main (int argc, B
char** argv) {
A ay
B b;
A* a ptr a = &a;
A* a ptr b = &b;
B* b ptr a = &a;
B* b ptr b = &b;
a ptr a->M1(); //
a ptr a->M2(); //
a ptr b->M1(); //
a ptr b->M2(); //
b ptr b->M1(); //
b ptr b->M2(); //
\} J

11

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casts CSE333, Fall 2023

Lecture Outline

>

+» C++ Inheritance
= Abstract Classes
= Static Dispatch
= Constructors and Destructors
= Assighment

+ C++ Casting
< C++ Conversions

>

« Reference: C++ Primer, Chapter 15

12

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+» Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

13

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

- You can use the initialization list of the derived class to specify which
base class constructor to use

14

YA/ UNIVERSITY of WASHINGTON

Constructor Examples

L19: C++ Inheritance Il, Casts

badctor.cc goodctor.cc
((class Base { // no default ctor B (// has default ctor N
public: class Base {
Base (int yi) v(yi) { } public:
int y; int y;
Y i
// Compiler error when you try to // works now
// lnstantiate a Derl, as the class Derl public Base {
// synthesized default ctor needs public:
// to invoke Base's default ctor. int z;
class Derl public Base { s
public:
T // still works
} class Der?2 public Base {
public:
class Der?2 public Base { Der2 (int zi) z(zi) { }
public: int z;
Der2 (int yi, 1int zi) \}; y

Base (yi), z(zi) { }
int z;

bg

.

CSE333, Fall 2023

15

YA/ UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casts

Destructors and Inheritance

« Destructor of a derived
class:
= First runs body of the dtor

= Then invokes of the dtor
of the base class

+ Static dispatch of
destructors is almost
always a mistake!

" Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

CSE333, Fall 2023

[
STYLE
\

TIP
baddtor.céy

-
class Base {

[

class Derl

Base* bOptr =
Base* blptr =

delete bOptr; //
delete blptr; //

public:
Base () { x = new 1int; }
~Base () { delete x; }
int* x;

: public Base {

public:
Derl() { y = new int; }
~Derl () { delete y; 1}
int* y;
}i
void Foo () {

new Base;
new Derl;

~N

16

YA/ UNIVERSITY of WASHINGTON

Assighment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class

= Known as object slicing

- It’s legal since b d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

L19: C++ Inheritance Il, Casts

CSE333, Fall 2023

slicing.cc

-
class Base

public:
Base (int
int x;

b g

x1)

class Derl :

public:
Derl (int
int y;

P E

void Foo ()
Base b (1
Derl d(2

d = b;
b = d;

b

yi)

)
)

//
//

{

o x(x1i) { }

public Base {

: Base (16), y(yi) { }

\

17

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

STL and Inheritance

+ Recall: STL containers store copies of values

= What happens when we want to store mixes of object types in a
single container? (e.g., Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 11i;

1i.push back(s); // OK
li.push back(ds); // OUCH!

return EXIT SUCCESS;

18

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL

containers
= No slicing! ©
" sort () doesthe wrong thing ®

"= You have to remember to de 1l et e your objects before
destroying the container ®
- Unless you use smart pointers!

19

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Lecture Outline

+» C++ Inheritance
= Abstract Classes

= Static Dispatch
= Constructors and Destructors

X/
>

= Assignment
« C++ Casting
<+ C++ Conversions

X/
>

» Reference: C++ Primer §4.11.3, 19.2.1

20

YA/ UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casts

CSE333, Fall 2023

Explicit Casting in C

22 Simplesyntax:[lhs = (new type) rhs;
+» Used to:

= Convert between pointers of arbitrary type
- Doesn’t change the data, but treats it differently

= Forcibly convert a primitive type to another
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear

" You should not use C-style casting in C++.

21

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casts CSE333, Fall 2023

Casting in C++ I

« C++ provides an alternative casting style that is more
informative:
" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)
+ Always use these in C++ code

" |ntentis clearer
= Easier to find in code via searching

22

YA/ UNIVERSITY of WASHINGTON

static_cast

L19: C++ Inheritance Il, Casts

% statlic cast canconvert:

= Pointers to classes of related type

_ _ public:
- Compiler error if classes are not related float x;
- Dangerous to cast down a class hierarchy bi
" Casting between void* and T* class C : public B {
public:
" Non-pointer conversion char x;
- e.g., floattoint . L 2
. . void Foo () {
¢ static castlis B b; C c;
checked at compile time // compiler error
A* aptr = static cast<A*>(&b);
// OK
B* bptr = static cast<B*>(&c);
// compiles, but dangerous

CSE333, Fall

staticcast.cc

2023

rclass A |
public:
int x;

b g

class B {

C*

cptr = static cast<C*>(&b);

23

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts

dynamic cast

» dynamic cast can convert:

= Pointers to classes of related type

CSE333, Fall 2023

dynamiccast.cc

class Base {

public:

virtual void Foo () { }

float x;
b g

class Derl

public Base {

= References to classes of related type public:
: . char x;
» dynamic cast ischecked atboth |,.

compile time and ol e) I w
run time Base b; Derl d;
= Casts between // OK (run-time check passes)

unrelated classes fail Base* bptr = dynamic_cast<Base*> (&d) ;

o L | — .

atconwpnetnne assert (bptr !'= nullptr);

® Casts from base to // OK (run-time check passes)

derived fail at run
time if the pointed-to
object is not the
derived type

assert (dptr

bptr = &b;

assert (dptr

Derl* dptr =

// Run-time check fails,

dynamic cast<Derl*> (bptr);
!= nullptr);

returns nullptr

dptr = dynamic cast<Derl*> (bptr);
!= nullptr);

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

[void Foo (int* x) |
*x++;

}

vold Bar (const int* x) {
Foo (x) ; // compller error
Foo (const cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
Bar (&x) ;
return EXIT SUCCESS;
}

\. J

25

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

reinterpret cast

+ reinterpret cast casts between incompatible types

= |ow-level reinterpretation of the bit pattern
" e.g., storing a pointer in an 1nt, or vice-versa

- Works as long as the integral type is “wide” enough
" Converting between incompatible pointers

- Dangerous (!)

 This is used (carefully) in hw3

= Use any other C++ cast if you can!

26

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Casting Style Considerations LY

+» From the “Casting” and “Run-Time Type Information
(RTTI)” sections of the Google C++ Style Guide:

= When the logic of a program guarantees that a given instance of a
base class is, in fact, an instance of a particular derived class, then
a dynamic cast may be used freely on the object.
« Usuallyone canusea static cast asan alternative in such
situations
" Onlyuse reinterpret cast if you know what you are doing
and you understand the aliasing issues

- For unsafe conversions of pointer types to and from integer and other
pointer types, including void*

27

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Lecture Outline

+» C++ Inheritance
= Abstract Classes

= Static Dispatch
= Constructors and Destructors

X/
>

= Assignment
+ C++ Casting
+ C++ Conversions

X/
>

» Reference: C++ Primer §4.11.3, 19.2.1

28

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Implicit Conversion

+ The compiler tries to infer some kinds of conversions

= When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

rvoid Bar (std::string x);

void Foo () {
int x = 5.7; // conversion, float -> int
char ¢ = x; // conversion, int -> char
Bar ("hi") ; // conversion, (const char*) -> string

}

. J

29

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts

Sneaky Implicit Conversions

%+ (const char*)to string conversion?

= |f a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

= At most, one user-defined implicit conversion will happen

- Cando int = Foo, butnot int - Foo — RBaz

class Foo {

public:
Foo(int x1i) : x(x1i) { }
int x;

bg

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // equivalent to return Bar (Foo (5));

)) 30

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Avoiding Sneaky Implicits Iy

+ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path
= Usually a good idea

[class Foo {

public:
explicit Foo(int xi) : x(x1i) { 1}
int x;

bg

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

J 31

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts

Extra Exercise #1

+ Design a class hierarchy to represent shapes
= e.g., Circle, Triangle, Square

+ Implement methods that:

Construct shapes

Move a shape (i.e., add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Fall 2023

32

YA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casts CSE333, Fall 2023

Extra Exercise #2

« Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

= Constructs a vector of shapes

L)

= Sorts the vector according to the area of the shape
" Prints out each member of the vector

<« Notes:

L)

= Avoid slicing!
" Make sure the sorting works properly!

33

