CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads

Concurrency: Threads
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala

Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Deeksha Vatwani

Yegor Kuznetsov Jennifer Xu

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Relevant Course Information

+ Exercise 11 due tonight (11/27) by 10pm
» Exercise 12 released tomorrow

+» Homework 4 due next Wednesday (12/6)
= Submissions accepted until Friday (12/8) at 10pm

+ Next lecture: Concurrency via multiprocessing

+ Bonus lectures: Writing highly performant C++? Intro to
Rust?

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Threads

+ Threads are like lightweight processes

" They execute concurrently like processes
- Multiple threads can run simultaneously on multiple CPUs/cores

= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

— But, they can interfere with each other — need synchronization for shared
resources

- Each thread has its own stack

+ Analogy: restaurant kitchen

= Kitchen is process
" Chefs are threads

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Single-Threaded Address Spaces

_ + Before creating a thread

SP — StaC'Ipafe“t " One thread of execution running
in the address space

- One PC, stack, SP

t " That main thread invokes a
function to create a new thread

Shared Libraries
T - Typically pthread create ()

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata
PCparent

YA/ UNIVERSITY of WASHINGTON

L25: Concurrency and Threads

CSE333, Fall 2023

Multi-threaded Address Spaces

_ + After creating a thread

Stackparent

'

Stackehiig

gpd}ﬂm - 1

Pl =
PCparent =

1

Shared Libraries

1

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

= Two threads of execution running
in the address space
- Original thread (parent) and new
thread (child)
- New stack created for child thread
- Child thread has its own values of
the PC and SP
= Both threads share the other
segments (code, heap, globals)

- They can cooperatively modify
shared data

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h
- Not part of the C/C++ language (cf., Java)

"= To enable support for multithreading, must include —-pthread
flag when compiling and linking with gcc command

-« gcc —g —Wall -std=cl7 -pthread —-o main main.c

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Creating and Terminating Threads

X (int pthread create (

pthread t* thread,

const pthread attr t* attr,
void* (*start routine) (void*),
vold* arqg);

L)

. J

" Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

= Returns O on success and an error number on error (can check
against error constants)

" The new thread runs start routine (arg)

< | void pthread exit(void* retval);

= Equivalentof exit (retval) ; for athread instead of a process

" The thread will automatically exit once it returns from
start routine ()

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

What To Do After Forking Threads?

X [int pthread join(pthread t thread, void** retval);]

= Waits for the thread specified by thread to terminate
= The thread equivalent of waitpid ()
" The exit status of the terminated thread is placed in **retval

RS [int pthread detach(pthread t thread); J

= Mark thread specified by thread as detached — it will clean up
its resources as soon as it terminates

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Concurrent Server with Threads

+ A single process handles all of the connections, but a
parent thread dispatches (creates) a new thread to handle
each connection

" The child thread handles the new connection and then exits when
the connection terminates

+ See searchserver threads/ for code if curious

W UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Multithreaded Server

server

10

W UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Multithreaded Server

1 pthread create()
7’

m pthread detach(()

server

11

W UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Multithreaded Server

server

12

W UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Multithreaded Server

\
/\ pthread create ()

server

13

W UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Multithreaded Server

shared

data
structures

server

14

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Thread Examples

%~ See cthreads.c

" How do you properly handle memory management?
- Who allocates and deallocates memory?
- How long do you want memory to stick around?

+ Seepthreads.cc

= More instructions per thread = higher likelihood of interleaving

+ See searchserver threads/searchserver.cc

" When calling pthread create(),start routine points
to a function that takes only one argument (a void¥*)

- To pass complex arguments into the thread, create a struct to bundle
the necessary data

15

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Why Concurrent Threads? (Review)

+» Advantages:

= Almost as simple to code as sequential

- In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

"= Concurrent execution with good CPU and network utilization
- Some overhead, but less than processes

= Shared-memory communication is possible

+ Disadvantages:
= Synchronization is complicated

= Shared fate within a process
« One “rogue” thread can hurt you badly

16

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Data Races

+» Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

"= Means that the result of a program can vary depending on chance
(which thread ran first?)

17

YA/ UNIVERSITY of WASHINGTON

L25: Concurrency and Threads

CSE333, Fall 2023

Data Race Example

+ If your fridge has no milk,

(if ('milk) {
then go out and buy some more
®" What could go wrong? buy milk
L} J
+ If you live alone:

‘.A
NE o

+ If you live with a roommate:
® -

. i ()
;"@ Ao @"}:

El]

o=

18

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

@ PO" Eve I‘yWhere pollev.com/cse333

Does leaving a note on the fridge (- Linote] |)
fix our milk data race problem? if ('milk) {
leave note
buy milk
A. remove note
}
B. No, could end up with no milk)]

C. No, could still buy multiple milk
D. We’re lost...

19

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads

Threads and Data Races

+ Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

+ Example: two threads try to read from and write to the
same shared memory location

= Could get “correct” answer
" Could accidentally read old or intermediate (i.e., invalid) value

"= One thread’s work could get “lost”

+» Example: two threads try to push an item onto the head
of the linked list at the same time
= Could get “correct” answer
" Could get different ordering of items
" Could break the data structure! 2

20

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Synchronization

« Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

"= Need some mechanism to coordinate the threads

L)

- “Let me go first, then you can go”

= Many different coordination mechanisms have been invented
(see CSE 451)

+ Goals of synchronization:

" Liveness — ability to execute in a timely manner
(informally, “something good happens”)

L)

= Safety —avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

21

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Lock Synchronization

+ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

= Executed in an uninterruptible (i.e., atomic) manner

+ Pseudocode:

« Lock Acquire ' // non-critical code |
= Wait until the lock is free, loop/idle
then take it lock.acquire () ; _/ iflocked

// critical section

lock.release () ;
« Lock Release

= Release the lock // non-critical code

. J

= |f other threads are waiting, wake exactly one up to pass lock to

22

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads

CSE333, Fall 2023

Milk Example — What is the Critical Section?

«+ What if we use a lock on the
refrigerator?

= Probably overkill — what if
roommate wanted to get eggs?

+ For performance reasons, only
put what is necessary in the
critical section
" Only lock the milk

= But lock all steps that must run
uninterrupted (i.e., must run
as an atomic unit)

rfridge.lock()

1t ('milk) {
buy milk

}

fridge.unlock ()

~

!

‘milk lock.lock ()

if ('milk) |
buy milk

}

milk lock.unlock ()

23

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

pthreads and Locks

« Another term for a lock is a mutex (“mutual exclusion”)
" pthread.h defines datatype pthread mutex t

<+ | int pthread mutex init (pthread mutex t* mutex,
const pthread mutexattr t* attr);

" |nitializes a mutex with specified attributes

X [int pthread mutex lock (pthread mutex t* mutex); J

= Acquire the lock — blocks if already locked

X [int pthread mutex unlock (pthread mutex t* mutex); J

= Releases the lock

o [int pthread mutex destroy(pthread mutex t* mutex);]

= “Uninitializes” a mutex — clean up when done

24

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads

CSE333, Fall 2023

pthread Mutex Examples

+ See total.cc

= Data race between threads

+ See total locking.cc

= Adding a mutex fixes our data race

+» How does this compare to sequential code?

= Likely slower — only 1 thread can increment at a time, but have to
deal with checking the lock and switching between threads

" One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

25

YA/ UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

Your Turn! (pthread mutex)

+ Rewrite thread mainfrom total locking.cc:

" |t need to be passed an int* with the address of sum total
and an int with the number of times to loop (in that order)

" |Increment a local sum variable NUM times, then add it to
sum total

= Handle synchronization properly!

26

YA UNIVERSITY of WASHINGTON L25: Concurrency and Threads CSE333, Fall 2023

C++11 Threads

+» C++11 added threads and concurrency to its libraries

L)

<thread> —thread objects
<mutex> —locks to handle critical sections

<condition wvariable>—used to block objects until
notified to resume

<atomic> —indivisible, atomic operations
<future>—asynchronous access to data

These might be built on top of <pthread.h>, but also might
not be

Definitely use in C++11 code if local conventions allow,
but pthreads will be around for a long, long time

Use pthreads in current exercise
27

