
CSE333, Autumn 2023L28: Intro to Rust

Introduction to Rust
CSE 333 Autumn 2023

Lecturer: Chris Thachuk

CSE333, Autumn 2023L28: Intro to Rust

Lecture Outline

❖ A (very brief) tour of Rust
▪ Not comprehensive, but will highlight interesting features

▪ Basic examples directly from “The Book” and “Rust by Example”

▪ Resources to learn Rust listed on last slide

❖ Demo project: designing orthogonal strands of DNA

2

CSE333, Autumn 2023L28: Intro to Rust

Logistics

❖ Ex12 due tonight

❖ Hw4 due Wednesday (12/4)

❖ Section this week (course wrap-up)

❖ Last bonus lecture today; no lectures on Wed & Fri

❖ Exam prep

3

CSE333, Autumn 2023L28: Intro to Rust

What is Rust?

❖ Rust is a modern systems programming language focusing
on safety, speed, and concurrency. It accomplishes these
goals by being memory safe without using garbage
collection.
 – Rust By Example

❖ Rust programmers are called ‘Rustaceans’

4

CSE333, Autumn 2023L28: Intro to Rust

Rust

❖ Created in 2006 by Graydon Hoare

▪ Sponsored by Mozilla in 2009

▪ Multi-paradigm, general purpose programming language

▪ Adopted by major companies and governance via Rust Foundation

▪ Rust will become the second ‘main’ language in Linux Kernel 6.1

❖ Characteristics

▪ Aims to support efficient, fearless, concurrent systems programming

▪ Memory safe with rich type system

▪ Ergonomic developer experience

▪ Interoperable with C/C++
5

CSE333, Autumn 2023L28: Intro to Rust

Hello World in Rust

6

fn main() {
 println!("Hello, World!");
}

$ rustc hello_cse333.rs
$./hello_cse333

Hello CSE 333, Autumn 2023 edition

fn main() {
 let unit = "CSE";
 let course_num: u16 = 333;
 let term = String::from("Autumn 2023");

 println!("Hello {} {}, {} edition", unit, course_num, term);
}

hello_cse333.rs

CSE333, Autumn 2023L28: Intro to Rust

Scalar Types

7

● signed integers: i8, i16, i32, i64, i128 and isize (pointer size)

● unsigned integers: u8, u16, u32, u64, u128 and usize (pointer size)

● floating point: f32, f64

● char Unicode scalar values like 'a', 'α' and '∞' (4 bytes each)

● bool either true or false

● and the unit type (), whose only possible value is an empty tuple: ()

fn main() {
 // Variables can be type annotated.
 let logical: bool = true;

 let a_float: f64 = 1.0; // Regular annotation
 let an_integer = 5i32; // Suffix annotation

 // A type can also be inferred from context
 let mut inferred_type = 333; // Type i64 is inferred from another line
 inferred_type = 3333333333i64;
}

CSE333, Autumn 2023L28: Intro to Rust

Compound Types

8

● arrays like [1, 2, 3]

● tuples like (1, true)

Mutability
● Variables are immutable by default.

fn main() {
 let num = 333;
 let mut year = 2021;

 // The value of a mutable variable can change.
 year = 2022;

 // Error! The type of a variable can't be changed.
 year = true;

 // Error! Variables are immutable by default.
 num = 351;
}

CSE333, Autumn 2023L28: Intro to Rust

Structures (3 types)

9

● Tuple structs: named tuples

● Classic C structs

● Unit structs: field-less

(useful for generics)

// A unit struct
struct Unit;

// A tuple struct
struct Pair(i32, f32);

// A struct with two fields
struct Point {
 x: f32,
 y: f32,
}

fn main() {
 // Instantiate a unit struct
 let _unit = Unit;
 // Instantiate a tuple struct
 let pair = Pair(1, 0.1);
 // Instantiate a C struct
 let point = Point { x: 333, y: 2022 };
 // Access `y` field of `point`.
 let year = point.y;
}

https://en.wikipedia.org/wiki/Struct_(C_programming_language)

CSE333, Autumn 2023L28: Intro to Rust

Functions

10

● declared using the fn keyword

● arguments are type annotated

● if the function returns a value, the return type must be specified after an arrow ->

fn main() {
 let x = plus_one(5);

 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1
}

CSE333, Autumn 2023L28: Intro to Rust

if / else

11

● boolean condition doesn't need to be surrounded by parentheses

● each condition is followed by a block

● if-else conditionals are expressions, and, all branches must return the same type

fn main() {
 let n = 5;

 if n < 0 {
 print!("{} is negative", n);
 } else if n > 0 {
 print!("{} is positive", n);
 } else {
 print!("{} is zero", n);
 }
}

CSE333, Autumn 2023L28: Intro to Rust

if / else (cont’d)

12

● boolean condition doesn't need to be surrounded by parentheses

● each condition is followed by a block

● if-else conditionals are expressions, and, all branches must return the same type

fn main() {
 let n = 5;

 let big_n = if n < 10 && n > -10 {
 println!("{} is a small number, increase ten-fold", n);
 // This expression returns an `i32`.
 10 * n
 } else {
 println!("{} is a big number, halve the number");
 // This expression must return an `i32` as well.
 n / 2
 };
// ^ Don't forget to put a semicolon here! All `let` bindings need it.
 println!("{} -> {}", n, big_n);
}

CSE333, Autumn 2023L28: Intro to Rust

while

13

● loop while condition is true

● → FizzBuzz

fn main() {
 // A counter variable
 let mut n = 1;

 // Loop while `n` is less than 101
 while n < 101 {
 if n % 15 == 0 {
 println!("fizzbuzz");
 } else if n % 3 == 0 {
 println!("fizz");
 } else if n % 5 == 0 {
 println!("buzz");
 } else {
 println!("{}", n);
 }

 // Increment counter
 n += 1;
 }
}

CSE333, Autumn 2023L28: Intro to Rust

for-in

14

● for traverses an iterator

● → FizzBuzz with for-in

fn main() {
 // `n` will take the values:
 // 1, 2, ..., 100
 for n in 1..101 {
 if n % 15 == 0 {
 println!("fizzbuzz");
 } else if n % 3 == 0 {
 println!("fizz");
 } else if n % 5 == 0 {
 println!("buzz");
 } else {
 println!("{}", n);
 }
 }
}

fn main() {
 let names = vec!["Alice", "Frank", "Ferris"];

 for name in names.iter() {
 println!("Hello {}", name),
 }
}

● create iterator and traverse

CSE333, Autumn 2023L28: Intro to Rust

match

15

● powerful pattern matching

● first matching arm is evaluated

● all possible values must be covered

fn main() {
 let number = 13;

 match number {
 // Match a single value
 1 => println!("One!"),
 // Match several values
 2 | 3 | 5 | 7 | 11 => println!("This is a small prime"),
 // Match an inclusive range
 13..=19 => println!("A teen"),
 // Handle the rest of cases
 _ => println!("Ain't special"),
 }
}

CSE333, Autumn 2023L28: Intro to Rust

Associated functions & methods

16

● associated functions are functions that are defined on a type

● methods are associated functions that are called on a particular instance of a type

struct Point {
 x: f64,
 y: f64,
}

// Implementation block, all `Point` associated functions & methods go in here
impl Point {
 // An associated function, taking two arguments:
 fn new(x: f64, y: f64) -> Point {
 Point { x: x, y: y }
 }
 // This method requires the caller object to be mutable
 fn translate(&mut self, x: f64, y: f64) {
 self.x += x;
 self.y += y;
 }
}

CSE333, Autumn 2023L28: Intro to Rust

Values, variables, and pointers
❖ values are stored in a place
❖ a place is a location that can hold a value

❖ e.g. on the stack, on the heap, etc

❖ a variable is named location on the stack

17

// `x` variable is a named place on stack
let x = 333; // x holds the i32 value ‘333’

333x

stack

CSE333, Autumn 2023L28: Intro to Rust

Values, variables, and pointers
❖ values are stored in a place
❖ a place is a location that can hold a value

❖ e.g. on the stack, on the heap, etc

❖ a variable is named location on the stack

18

// `x` variable is a named place on stack
let x = 333; // x holds the i32 value ‘333’
let y = 351;

351y

333x

stack

CSE333, Autumn 2023L28: Intro to Rust

Values, variables, and pointers
❖ values are stored in a place
❖ a place is a location that can hold a value

❖ e.g. on the stack, on the heap, etc

❖ a variable is named location on the stack
❖ a pointer holds the address of a place

19

// `x` variable is a named place on stack
let x = 333; // x holds the i32 value ‘333’
let y = 351;

// `w` variable is a reference that holds
// a pointer value
let w = &x;

w

351y

333x

stack

CSE333, Autumn 2023L28: Intro to Rust

Values, variables, and pointers
❖ values are stored in a place
❖ a place is a location that can hold a value

❖ e.g. on the stack, on the heap, etc

❖ a variable is named location on the stack
❖ a pointer holds the address of a place

20

// `x` variable is a named place on stack
let x = 333; // x holds the i32 value ‘333’
let y = 351;

// `w` variable is a reference that holds
// a pointer value
let w = &x;

// `z` initially has same value as `w`
let mut z = &x;

z

w

351y

333x

stack

CSE333, Autumn 2023L28: Intro to Rust

Values, variables, and pointers
❖ values are stored in a place
❖ a place is a location that can hold a value

❖ e.g. on the stack, on the heap, etc

❖ a variable is named location on the stack
❖ a pointer holds the address of a place

21

// `x` variable is a named place on stack
let x = 333; // x holds the i32 value ‘333’
let y = 351;

// `w` variable is a reference that holds
// a pointer value
let w = &x;

// `z` initially has same value as `w`
let mut z = &x;
// … but its value is mutable
z = &y;

z

w

351y

333x

stack

CSE333, Autumn 2023L28: Intro to Rust

Ownership (Rust’s secret sauce)
❖ Ownership Rules:

▪ Each value in Rust has an owner

▪ There can only be one owner at a time

▪ When the owner goes out of scope, the value is dropped

22

borrow
checker

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap

23

fn double_value(x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333); // position t1
 double_value(x);

}

Does this compile?

x

stack heap

333 …

// memory relationships at position t1

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap

24

fn double_value(x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);

}

Does this compile?

error[E0594]: cannot assign to `*x`, as `x` is not declared as mutable
 --> src/main.rs:3:5
 |
2 | fn double_value(x: Box<i32>) {
 | - help: consider changing this to be mutable: `mut x`
3 | *x = 2 * (*x);
 | ^^^^^^^^^^^^^ cannot assign

No!

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap

25

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);

}

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap

26

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);

}

Does this compile?

Yes!

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap

27

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap
❖ what owns the value ‘333’?

28

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

x

stack heap

333 …

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap
❖ what owns the value ‘333’?

29

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

x

stack heap

333 …

x
(double_value)

..

.

ownership moved, original x is no longer accessible since it does not contain a value

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap
❖ what owns the value ‘333’?

30

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

stack heap

666 …

x
(double_value)

..

.

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap
❖ what owns the value ‘333’?

31

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

stack heap

…

x
(double_value)

..

.

owner out of scope ⇒ value is dropped

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap
❖ what owns the value ‘333’?

32

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

stack heap

…

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap

33

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

▪ Each value in Rust has an owner

▪ There can only be one owner at a time

▪ When the owner goes out of scope, the value is dropped

Recall

CSE333, Autumn 2023L28: Intro to Rust

Ownership and moves
❖ note: box is a place we create on the heap

34

fn double_value(mut x: Box<i32>) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = Box::new(333);
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

No!

error[E0382]: borrow of moved value: `x`
 --> src/main.rs:9:55
 |
7 | let mut x = Box::new(333);
 | ----- move occurs because `x` has type `Box<i32>`, which does not implement the `Copy` trait
8 | double_value(x);
 | - value moved here
9 | println!("What happens if I take 333 twice?: {}", x);
 | ^ value borrowed here after move

CSE333, Autumn 2023L28: Intro to Rust

Ownership and `Copy` trait
❖ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
❖ Most primitive types “are Copy”

35

fn double_value(mut x: i32) {
 x = 2 * x;
}

fn main() {
 let mut x = 333;
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Ownership and `Copy` trait
❖ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
❖ Most primitive types “are Copy”

36

fn double_value(mut x: i32) {
 x = 2 * x;
}

fn main() {
 let mut x = 333;
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

Yes!

CSE333, Autumn 2023L28: Intro to Rust

Ownership and `Copy` trait
❖ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
❖ Most primitive types “are Copy”

37

fn double_value(mut x: i32) {
 x = 2 * x;
}

fn main() {
 let mut x = 333;
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

Yes!

BUT…

CSE333, Autumn 2023L28: Intro to Rust

Ownership and `Copy` trait
❖ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
❖ Most primitive types “are Copy”

38

fn double_value(mut x: i32) {
 x = 2 * x;
}

fn main() {
 let mut x = 333;
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

Yes!

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Ownership and `Copy` trait
❖ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
❖ Most primitive types “are Copy”

39

fn double_value(mut x: i32) {
 x = 2 * x;
}

fn main() {
 let mut x = 333;
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

333

stack

333x
(double_value)

..

.

Yes!

x
(main)

CSE333, Autumn 2023L28: Intro to Rust

Ownership and `Copy` trait
❖ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
❖ Most primitive types “are Copy”

40

fn double_value(mut x: i32) {
 x = 2 * x;
}

fn main() {
 let mut x = 333;
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

333

stack

666x
(double_value)

..

.

Yes!

x
(main)

CSE333, Autumn 2023L28: Intro to Rust

Ownership and `Copy` trait
❖ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
❖ Most primitive types “are Copy”

41

fn double_value(mut x: i32) {
 x = 2 * x;
}

fn main() {
 let mut x = 333;
 double_value(x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

333

stack

Yes!

x
(main)

CSE333, Autumn 2023L28: Intro to Rust

Borrowing
❖ References “borrow” a value, but never take ownership
❖ Can have shared references (&T),

or mutable references (&mut T)

❖

❖

42

fn double_value(x: &mut i32) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = 333;
 double_value(&mut x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333
666

stack

x
(main)

x
(double_value)

..

.

CSE333, Autumn 2023L28: Intro to Rust

Borrowing
❖ References “borrow” a value, but never take ownership
❖ Can have shared references (&T),

or mutable references (&mut T)

❖

❖

43

fn double_value(x: &mut i32) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = 333;
 double_value(&mut x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Borrowing
❖ References “borrow” a value, but never take ownership
❖ Can have shared references (&T),

or mutable references (&mut T)

❖

❖

44

fn double_value(x: &mut i32) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = 333;
 double_value(&mut x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Borrowing
❖ References “borrow” a value, but never take ownership
❖ Can have shared references (&T),

or mutable references (&mut T)

❖

❖

45

fn double_value(x: &mut i32) {
 *x = 2 * (*x);
}

fn main() {
 let mut x = 333;
 double_value(&mut x);
 println!("What happens if I take 333 twice?: {}", x);
}

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

$ rustc ownership_borrow.rs
$./ownership_borrow

What happens if I take 333 twice?: 666

Yes!

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

46

let mut x = Box::new(333);
let r1 = &x;
let r2 = &x;
println!("{}", r1);

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

47

let mut x = Box::new(333);
let r1 = &x;
let r2 = &x;
println!("{}", r1);

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

Yes!

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules and lifetimes
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

48

let mut x = Box::new(333);
let r1 = &x;
let r2 = &x;
let r3 = &mut x;
println!("{}", r1);

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules and lifetimes
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

49

let mut x = Box::new(333);
let r1 = &x;
let r2 = &x;
let r3 = &mut x;
println!("{}", r1);

Does this compile?

No!

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

error[E0502]: cannot borrow `x` as mutable because it is also borrowed as immutable

 --> src/main.rs:6:10

 |

4 | let r1 = &x;

 | -- immutable borrow occurs here

5 | let r2 = &x;

6 | let r3 = &mut x;

 | ^^^^^^ mutable borrow occurs here

7 | println!("{}", r1);

 | -- immutable borrow later used here

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules and lifetimes
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

50

let mut x = Box::new(333);
let r1 = &x;
let r2 = &x;
println!("{}", r1);
let r3 = &mut x;

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Pre 2018 borrow checking (lexical lifetimes)
❖ borrow checking used to be lexically scoped
❖ confusing to new Rustaceans (this code seems correct)

51
https://hacks.mozilla.org/2018/12/rust-2018-is-here/

borrow
checker

CSE333, Autumn 2023L28: Intro to Rust

Borrow checking (non-lexical lifetimes)
❖ lifetimes end after use (not end of block)
❖ code that you reason should compile, will (*)

52(*) This isn’t always true. The borrow checker remains conservative when safety is on the line.

borrow
checker

https://hacks.mozilla.org/2018/12/rust-2018-is-here/

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules and lifetimes
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

53

let mut x = Box::new(333);
let r1 = &x;
let r2 = &x;
println!("{}", r1);
let r3 = &mut x;

Does this compile?

Yes!

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules and lifetimes
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

54

let mut x = Box::new(333);
let r1 = &x;
if rand() < 0.333 {
 *x = 351;
} else {
 println!("{}", r1);
}
println!("{}", r1);

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules and lifetimes
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

55

let mut x = Box::new(333);
let r1 = &x; // lifetime 'a
if rand() < 0.333 { // |
 *x = 351; // |
} else { // |
 println!("{}", r1); // |
} // |
println!("{}", r1); //-/

Does this compile?

$ rustc ownership_copy.rs
$./ownership_copy

What happens if I take 333 twice?: 333

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules and lifetimes
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

56

let mut x = Box::new(333);
let r1 = &x;
if rand() < 0.333 {
 *x = 351;
} else {
 println!("{}", r1);
}

Does this compile?

CSE333, Autumn 2023L28: Intro to Rust

Borrowing rules and lifetimes
❖ Can have multiple shared references simultaneously
❖ A mutable reference is an exclusive borrow

57

let mut x = Box::new(333);
let r1 = &x; // lifetime 'a
if rand() < 0.333 {
 *x = 351;
} else {
 println!("{}", r1); // lifetime 'a
}

Does this compile?

Yes!

‘a

‘a

let r1 = &x;

println!("{}", r1);*x = 351;

CSE333, Autumn 2023L28: Intro to Rust

Memory safety by examples

58

fn main() {
 // x 'owns' the heap allocated string below
 let x = String::from("CSE 333");

 // y took over ownership here (i.e., ownership "moved")
 let y = x;

 // x no longer owns value resulting in a borrow error
 println!("Hello, {}", x);
}

CSE333, Autumn 2023L28: Intro to Rust

Memory safety by examples (cont’d)

59

fn main() {
 let x = String::from("CSE 333");

 let y = &x; // Immutable borrow

 println!("Hello, {}", x);
 println!("Goodbye, {}", y);
}

Is this code OK? →

fn main() {
 let y = {
 let x = String::from("hi");
 &x
 };
 println!("{}", y);
}

Is this code OK? →

CSE333, Autumn 2023L28: Intro to Rust

Rust memory safety

60

● Either one mutable reference OR many immutable references
● No null
● Out-of-bounds access (checked at runtime) results in program panic
● Ownership rules apply across multiple threads

(no data races across threads, checked at compile time)

● Is memory leaking safe?

CSE333, Autumn 2023L28: Intro to Rust

Rust memory safety

61

● Either one mutable reference OR many immutable references
● No null
● Out-of-bounds access (checked at runtime) results in program panic
● Ownership rules apply across multiple threads

(no data races across threads, checked at compile time)

● Is memory leaking safe?

● Box<T> for allocating values on the heap

● Rc<T>, a reference counting type that enables multiple ownership

● Ref<T> and RefMut<T>, accessed through RefCell<T>, a type that enforces the

borrowing rules at runtime instead of compile time

smart pointers

CSE333, Autumn 2023L28: Intro to Rust

Rust Resources

❖ Rust Programming Language website:
https://www.rust-lang.org/

❖ “The Book” (official book):

https://doc.rust-lang.org/book/

❖ Rust for Rustaceans (intermediate book):

https://rust-for-rustaceans.com/

❖ Crates.io (official package repository):

https://crates.io/

62

https://www.rust-lang.org/
https://doc.rust-lang.org/book/
https://rust-for-rustaceans.com/
https://crates.io/

CSE333, Autumn 2023L28: Intro to Rust

Rust code can compile to WebAssembly

❖ code would run in client’s browser (i.e. serverless)

63

https://hacks.mozilla.org/2018/12/rust-2018-is-here/

CSE333, Autumn 2023L28: Intro to Rust

Lecture Outline

❖ A (very brief) tour of Rust
▪ Not comprehensive, but will highlight interesting features

▪ Basic examples directly from “The Book” and “Rust by Example”

▪ Resources to learn Rust listed on last slide

❖ Demo project: designing orthogonal strands of DNA

64

