LO6: File I/O

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON

File 1/0: Cstdio, Buffering, POSIX

CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin

Deeksha Vatwani
Humza Lala

Noa Ferman
Seulchan (Paul) Han

Tim Mandzyuk

CJ Reith

Edward Zhang
Lahari Nidadavolu
Saket Gollapudi
Timmy Yang

Wui Wu

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Relevant Course Information

<+ Homework 1 due next Thursday night (4/13)
" Clean up “to do” comments, but leave “STEP #” markers
" Graded not just on correctness, also code quality

" OH get crowded — come prepared to describe your incorrect
behavior and what you think the issue is and what you’ve tried

= late days: don’ttag hwl-final until you are really ready
- Please use them if you need to!

+ Homework 2 (and next exercise) released soon

= Partner declaration form and matching form will be released after
the spec is released

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Cont’d from previous lecture

«» C Preprocessor
+ Visibility of Symbols

" extern, static

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Namespace Problem

+ If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

" Yes, if you use external linkage
- The name “counter” refers to the same variable in both files
- The variable is defined in one file and declared in the other(s)
- When the program is linked, the symbol resolves to one location

"= No, if you use internal linkage
- The name “counter” refers to a different variable in each file
- The variable must be defined in each file
- When the program is linked, the symbols resolve to two locations

YW UNIVERSITY of WASHINGTON

External Linkage

o0

visible

LO6: File I/O

» extern makes a declaration of something externally-

= Works slightly differently for variables and functions...

CSE333, Spring 2023

foo.c

6

(#include <stdio.h> h (#include <stdio.h> A
#include <stdlib.h>
// "counter" is defined and
// A global variable, defined and // initialized in foo.c.
// initialized here in foo.c. // Here, we declare it, and
// It has external linkage by // specify external linkage
// default. // by using the extern specifier.
int counter = 1; extern int counter;
int main(int argc, char** argv) { volid Bar () {
printf ("%d\n", counter); counter++;
Bar () ; printf (" (Bar) : counter = %d\n",
printf ("%d\n", counter); counter) ;
return EXIT SUCCESS; \} y
& J bar.c

YW UNIVERSITY of WASHINGTON

LO6: File I/O

Internal Linkage

CSE333, Spring 2023

+ static (inthe global context) restricts a definition to

visibility within that file

foo.c

(#include <stdio.h> h (#include <stdio.h> R
#include <stdlib.h>
// A global variable, defined and
// A global variable, defined and // initialized here in bar.c.
// initialized here in foo.c. // We force internal linkage by
// We force internal linkage by // using the static specifier.
// using the static specifier. static int counter = 100;
static int counter = 1;
volid Bar () {
int main(int argc, char** argv) { counter++;
printf ("%d\n", counter); printf (" (Bar) : counter = %d\n",
Bar () ; counter) ;
printf ("%d\n", counter); }
return EXIT SUCCESS; _)
J J bar.c

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Function Visibility

bar.c

main.c

#include <stdlib.h>
extern int Bar(int x); // "extern" is default, usually omit

int main(int argc, char** argv) {
printf ("$d\n", Bar(5));
return EXIT SUCCESS;

\

(// By using the static specifier, we are indicating B
// that Foo() should have internal linkage. Other
// .c files cannot see or invoke Foo ().
static int Foo(int x) {
return x*3 + 1;
}
// Bar is "extern" by default. Thus, other .c files
// could declare our Bar () and invoke 1it.
int Bar(int x) {
return 2*Foo (x);
\} J
(#include <stdio.h> h

00 _

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Linkage Issues

+ Every global (variables and functions) is extern by
default

= Unless you add the st at ic specifier, if some other module uses
the same name, you’ll end up with a collision!

- Best case: compiler (or linker) error

- Worst case: stomp all over each other

+ It’s good practice to:
" Use static to “defend” your globals
- Hide your private stuff!
= Place external declarations in a module’s header file

- Header is the public specification

YW UNIVERSITY of WASHINGTON LO6: File I/O

CSE333, Spring 2023

Static Confusion...

+ Chas a different use for the word “static”: tocreatea
persistent local variable

" The storage for that variable is allocated when the program loads,
in either the .data or .bss segment

= Retains its value across multiple function invocations

/;oid Foo () { i\
static int count = 1;

printf ("Foo has been called %d times\n", count++);

}

void Bar () {
int count = 1;
printf ("Bar has been called %d times\n", count++);

}

int main(int argc, char** argv) {
Foo(); Foo(); Bar(); Bar(); return EXIT SUCCESS;

static_extent.c \}

J 10

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Additional C Topics

+ Teach yourself!

man pages are your friend!

String library functions in the C standard library
« #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...
« #include <stdlib.h>or#include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

unions and what they are good for
enums and what they are good for

Pre- and post-increment/decrement
Harder: the meaning of the “volatile” storage class

11

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Lecture Outline

+ File 1/O with the C standard library
+ C Stream Buffering
+» POSIX Lower-Level I/O

12

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

File 1/O

+» We'll start by using C’s standard library
" These functions are part of glibc on Linux

" They are implemented using Linux system calls (POSIX)

+» C's stdio defines the notion of a stream
= A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish
= |s buffered by default; 1 ibc reads ahead of your program
"= Three streams provided by default: stdin, stdout, stderxr
« You can open additional streams to read and write to files

= Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

13

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

C Stream Functions (1 of 2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

« Closes the specified stream (and file)

-[int fprintf (stream, format, ...);]
- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);
-[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

14

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

C Stream Functions (2 of 2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

« Closes the specified stream (and file)

-[size_t fwrite (ptr, size, count, stream);]

- Writes an array of count elements of size bytes from ptr to stream

-[Size_t fread (ptr, size, count, stream);]

- Reads an array of count elements of size bytes from stream to ptr

15

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

C Stream Error Checking/Handling

+» Some error functions (complete list in stdio.h):

-[int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

L [int clearerr (stream) ;]

- Resets error and EOF indicators for the specified stream

o [void perror (message) ;]

- Prints message followed by an error message related to errno to
stderr

16

C Streams Example

cp_example.c

r#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE* fin;
FILE* fout;
char readbuf [READBUFSIZE];
size t readlen;

}

// Open the input file
fin = fopen(argv[1l], "rb"); // "rb" -> read, binary mode
if (f£fin == NULL) {
perror ("fopen for read failed");
return EXIT FAILURE;
}

// next slide’s code

if (argc !'= 3) {
fprintf (stderr, "usage: ./cp example infile outfile\n");
return EXIT FAILURE; // defined in stdlib.h

N\

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

17

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

C Streams Example

rint main (int argc, char** argv) {

cp_example.c

N\

// previous slide’s code

// Open the output file
fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
1if (fout == NULL) {

perror ("fopen for write failed");

fclose (fin);

return EXIT FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
// Test to see i1f we encountered an error while reading
1f (ferror (fin)) {
perror ("fread failed");
fclose (fin);
fclose (fout) ;
return EXIT FAILURE;
}

// next slide’s code

LO6: File I/O

YW UNIVERSITY of WASHINGTON

C Streams Example

CSE333, Spring 2023

cp_example.c

D

rint main (int argc, char** argv) {
// two slides ago’s code
// previous slide’s code

1f (fwrite (readbuf, 1, readlen,
perror ("fwrite failed");
fclose (fin);
fclose (fout) ;
return EXIT FAILURE;
}
}

fclose (fin) ;
fclose (fout) ;

return EXIT SUCCESS;

fout)

< readlen)

{

19

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Lecture Outline

+ File I/O with the C standard library
+ C Stream Buffering
+» POSIX Lower-Level I/O

20

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Buffering

+» By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:

When you explicitly call ££1ush () on the stream

- When the buffer size is exceeded (often 1024 or 4096 bytes)

For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

When you call £close () on the stream

When your process exits gracefully (exit () or return from
main())

21

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Buffering Example

[int main (int argc, char** argv) {
mmdp FILE* fout = fopen ("test.txt", "wb");

// write "hi" one char at a time C stdio buffer
=l i (fwrite ("h", sizeof (char), 1, fout) < 1) { R
perror ("fwrite failed");
fclose (fout) ;
return EXIT FAILURE;
}
mmp if (fwrite("i", sizeof (char), 1, fout) < 1) { test.txt (disk)
perror ("fwrite failed"); I
fclose (fout) ;

return EXIT FAILURE;
}

=maPp fclose (fout):;
return EXIT SUCCESS;

}
buffered_hi.c

22

YW UNIVERSITY of WASHINGTON LO6: File I/O

No Buffering Example

[int main (int argc, char** argv) {

:¢ FILE* fout = fopen ("test.txt", "wb");
setbuf (fout, NULL); // turn off buffering

// write "hi'" one char at a time

mmp i (fwrite ("h", sizeof (char), 1, fout) <
perror ("fwrite failed");

fclose (fout) ;

return EXIT FAILURE;

}

P if (fwrite("i", sizeof (char), 1, fout) <
perror ("fwrite failed");

fclose(fout) ;

return EXIT FAILURE;

}

=maPp fclose (fout):;
return EXIT SUCCESS;

}

\

unbuffered_hi.c

CSE333, Spring 2023

C stdio buffer

’/

/

test.txt (disk)

'h'

l'

23

YW UNIVERSITY of WASHINGTON LO6: File I/O

Why Buffer?

« Performance — avoid disk accesses

" Group many small writes

|
into a single larger write

\

s

aon Dm0 \
input EER 1] ———=> ovhvt |, XKeach
E (§) bukler , Siream
individval J -
writgs P

CSE333, Spring 2023

N\

= Disk Latency = @ @ @

(Jeff Dean from LADIS '09)

Numbers Everyone Should Know

L1l cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy 3
Send 2K bytes over 1 Gbps network 2105
Read 1 MB sequentially from memory 250,
Round trip within same datacenter 500,
Disk seek 10,000,
Read 1 MB sequentially from disk 20,000,
Send packet CA->Netherlands->CA 150,000,

0.5 ns

5 ns

25 ns
100 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns

+ Convenience — nicer API
= We'll compare C's £read ()

with POSIX’s read ()

24

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" |oss of computer power = loss of data

= “Completion” of a write (i.e., return from £write ()) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

*

+» Performance — buffering takes time

= Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

D)

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

+» When is buffering faster? Slower?

25

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Lecture Outline

+ File I/O with the C standard library
+ C Stream Buffering
+» POSIX Lower-Level 1/0O

26

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

From C to POSIX

+» Most UNIX-en support a common set of lower-level file
access APIs: POSIX — Portable Operating System Interface
" open(), read(),write(),close (), 1seek ()
- Similar in spirit to their £* () counterparts from the C std lib
- Lower-level and unbuffered compared to their counterparts
- Also less convenient

" You will have to use these to read file system directories and for
network 1/0O, so we might as well learn them now

- These are functionalities that C stdio doesn’t provide!

27

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

open/close

+~ To open a file:
= Passin the filename and access mode (similar to fopen)

= Get back a “file descriptor”
- Similar to FILE* from fopen, butis justan int
- -1 indicates an error

(#include <fcntl.h> // for open()
#include <unistd.h> // for close /()

int fd = open("foo.txt", O RDONLY) ;
1if (fd == -1) {

perror ("open failed");

exit (EXIT FAILURE) ;
}

close (fd) ;
.)

+» Open descriptors: 0 (stdin), 1 (stdout), 2 (stderr)

28

YW UNIVERSITY of WASHINGTON LO6: File I/O

CSE333, Spring 2023

Reading from a File

é[ssize_t read (int fd, void* buf, size t count);]

= Advances forward in the file by number
of bytes read

= Returns the number of bytes read

- Might be fewer bytes than you requested (!!!)
- Returns 0O if you’re already at the end-of-file
- Returns -1 on error (and sets errno)

" There are some surprising error modes (check errno)
- ERADF: badfile descriptor

- EFAULT: output bufferis not a valid address

« HINTR: read was interrupted, please try again (ARGH!!!! @)
- And many others...

29

LO6: File I/O CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON

One method to read () n bytes

(int fd = open(filename, O RDONLY) ; R
char* buf = ...; // buffer of appropriate size
int bytes left = n;
int result;
while (bytes left > 0) {
result = read(fd, buf + (n - bytes left), bytes left);
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened, so return an error result
}
// EINTR happened, so do nothing and try again
continue;
} else 1if (result == 0) {
// EOF reached, so stop reading
break;
}
bytes left -= result;
}
\ Close (fd) ; y

readN.c 3;

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

Other Low-Level Functions

+» Read man pages to learn about:

" write () —write data
« #include <unistd.h>
= fsync () —flush data to the underlying device
« #include <unistd.h>
" opendir (), readdir (), closedir () —deal with directory
listings
- Make sure you read the section 3 version (e.g., man 3 opendir)
« #include <dirent.h>

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

32

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Spring 2023

C Standard Library vs. POSIX

+» Cstandard library implements a subset of POSIX
= e.g., POSIX provides directory manipulation that C std lib doesn’t

» Cstandard library implements automatic buffering
+» Cstandard library has a nicer API

« The two are similar but C standard library builds on top of
POSIX

" Choice between high-level and low-level

= Will depend on the requirements of your application
" You will explore this relationship in Exercise 4!

33

YW UNIVERSITY of WASHINGTON LO6: File I/O

Extra Exercise #1

+» Write a program that:

CSE333, Spring 2023

= Uses argc/argv to receive the name of a text file

= Reads the contents of the file a line at a time

" Parses each line, converting text intoa uint32 t

" Builds an array of the parsed uint32 t’s

= Sorts the array
= Prints the sorted array to stdout

« Hint: use man to read about
getline, sscanf, reallog,
and gsort

bash$ cat in.txt
1213

3231

000005

52

bash$./extral in.txt
5

52

1213

3231

bash$

34

YW UNIVERSITY of WASHINGTON

Extra Exercise #2

+» Write a program that:

LO6: File 1/O

= Loops forever; in each loop:

Prompt the user to
input a filename

Reads a filename
from stdin

Opens and reads
the file

Prints its contents
to stdout in the format shown:

00000000
00000010
00000020
00000030
00000040
00000050

00000060
00000070
00000080
00000090
000000a0

. etc ...

Use man to read about fgets

Or, if you’re more courageous, try man
libreadline.a and Google to learn how to link to it

CSE333, Spring 2023

3 readline tolearn about

