w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

C++ Class Details, Heap
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang
Humza Lala Lahari Nidadavolu
Noa Ferman Saket Gollapudi
Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Relevant Course Information

» Exercise 6 due Monday
» Exercise 7 out by Monday

= Will build on Exercise 6 and use what a lot of is discussed today

» Homework 2 due Thursday (4/27)

= File system crawler, indexer, and search engine

= Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

" Don’t modify the header files!

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Lecture Outline

+ Class Details

" Filling in some gaps from last time
+ Using the Heap

" new/delete/delete]]

YW UNIVERSITY of WASHINGTON

Rule of Three

+ |f you define any of:
1) Destructor
2) Copy Constructor
3) Assignment (operator=)

+» Then you should normally define all three

= Can explicitly ask for default synthesized versions (C++11):

L12: C++ Class Details, Heap

CSE333, Spring 2023

(class Point {

public:

Point ()
~Point ()

default;
default;
Point (const Pointé& copyme)
Pointé& operator=(const Pointé& rhs)

default;
default; //

the
the
the
the

default
default
default
default

ctor
dtor
cctor

m_um

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Dealing with the Insanity (C++11)

+» C++ style guide tip:
= Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

Point_2011.h
(class Point { N
public:
Point (const int x, const int y) : x (x), v (y) { } // ctor
Point (const Point& copyme) = delete; // declare cctor and "=" as
Pointé& operator=(const Pointé& rhs) = delete; // as deleted (C++11)
private:
}Y: // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
\ J

YW UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

CSE333, Spring 2023

Access Control

+ Access modifiers for members:
" public:accessible to all parts of the program

" private: accessible to the member functions of the class

e ————

- Private to class, not object instances

" protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

= |If no access modifier is specified, st ruct members default to
publicand class members defaulttoprivate

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Nonmember Functions

+» “Nonmember functions” are just normal functions that

happen to use some class

= Called like a regular function instead of as a member of a class
object instance
- This gets a little weird when we talk about operators...

= These do not have access to the class’ private members(mybe ﬁmj\ getks)

+ Useful nonmember functions often included as part of

interface to a class

= Declaration goes in header file, but outside of class definition
ember Aon-men ber

nomed f do«;\moin‘f' . : Distance (Pointh) S double Distance (Powth , Pooat &) y
fondion) ptL. Distance (PTZ) ; Dis‘i'anc.e(p'('l) 91' 2~)j

Floct opendor™® (Veche I, Vechr &) ;

float Vedor:: opera"’o(‘*(\led‘of A), d
< >vecl™® vee) ;

5
W) i, = ant

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

friend Nonmember Functions

+ A class can give a nonmember function (or class) access to
its non-public members by declaringitasa friend
within its definition
"= Not a class member, but has access privileges as if it were

= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

Complex.h
N

(class Complex { declarahion only

i

friend std::istream& operator>>(std::istream& in, Complexé& a);

\}; // class Complex

[std::istreams operator>>(std::istream& in, Complex& a) {

} defindn ontside o clags

\, J

Complex.cc 4

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

»
When to use Nonmember and friend °}}"

There is more to C++ object desion that we don'+t \[4

. M ber f i . have time to get to; these are good rules of thumb,
ember tunctions. . e cure +o +hink avout your class carefullyl

" QOperators that modify the object being called on
- Assignment operator (operator=)

= “Core” non-operator functionality that is part of the class
interface

+ Nonmember functions:

= Used for commutative operators

- e.g.,s0v1l + v2 isinvokedas operator+ (vl, v2)instead of
vl.operator+ (v2)

= |f operating on two types and the class is on the right-hand side
« e.g.,cin >> complex;

= Returning a “new” object, not modifying an existing one

" Only grant friend permission if you NEED to

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

@ PO" Evel‘yWheI‘e pollev.com/cse333sp

doesnt M)MF\’ objeds, aymmifutive
If we wanted to overload operator==to

compare two Point objects, what type
of function should it be?/ o need i Friend

<+ Reminder that Point has getters and a setter

A.
this & nd o thing, &S member Aundivg

B. _friend+member . duy oy nopubic dameles
| C. non-friend + non-membea

D. friend + non-member
E. I’'m lost...

10

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Same name, bt

Namespaces Jiffereut

namespace

+» Each namespace is a separate scope [:Tterator /

i i . tuIterator
= Useful for avoiding symbol collisions! 4 0

lowercase

2 Namespace dEfInItIOn/ Namespace doesn't add

0 namespace name { // mdewtation to contents
// declarations go here

\D // namespace name «
g)no J. . . , . .
= Doesn’t end with a semi-colon and doesn’t add to the indentation

of its contents
" Creates a new namespace name if it did not exist, otherwise adds

to the existing namespace (!)

- This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

Comment to remind that this
Is end of namespace

J

11

YW UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

CSE333, Spring 2023

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
namespaces:

= There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e., nsp name: :member)

- Unless you are using that namespace

« You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

12

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

13

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Lecture Outline

« Class Details

® Filling in some gaps from last time

+» Using the Heap
" new/delete/delete]]

14

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

|]
STYLE

C++11 nullptr s
\

-'-'

-<‘-U

+» Cand C++ have long used NULL as a pointer value that
references nothing

% C++11 introduced a new literal for this: nullptr

"= New reserved word

" |Interchangeable with NULTL for all practical purposes, but it has
type T* for any/every T, and is not an integer value

- Avoids funny edge cases (see C++ references for details)
- Still can convert to/from integer O for tests, assighment, etc.

= Advice: prefer nul lptrin C++11 code
- Though NULL will also be around for a long, long time

15

YW UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

CSE333, Spring 2023

new/delete

+ To allocate on the heap using C++, you use the new
keyword instead of malloc () from stdlib.h
" You can use new to allocate an object (e.g., new Point)

" You can use new to allocate a primitive type (e.g., new int)

+» To deallocate a heap-allocated object or primitive, use the
delete keyword instead of £ree () from stdlib.h
" Don’t mix and match!
- Never £ree () something allocated with new
- Never de]lete something allocated withmalloc ()

- Careful if you’re using a legacy C code library or module in C++

16

YW UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

CSE333, Spring 2023

new/delete Behavior

+» new behavior:
= When allocating you can specify a constructor or initial value
« e.g.,new Point(l, 2),new 1nt(333)

= If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

" You don’t need to check that new returns nul lptr

- When an error is encountered, an exception is thrown (that we won’t
worry about)

» delete behavior:

" |Ifyou delete already deleted memory, then you will get
undefined behavior (same as when you double £ree in C)

17

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

new/delete Example

(int* AllocateInt(int x) { B (Point* AllocatePoint (int x, 1int vy) {\
int* heapy int = new int; Point* heapy pt = new Point (x,y):
*heapy int = x; return heapy pt:;
return heapy int; }

U J \ J

heappoint.cc

r#include "Point.h")

// definitions of AllocateInt () and AllocatePoint ()

int main() {
Point* x = AllocatePoint (1, 2);
int* y = AllocatelInt (3);

cout << "x's x coord: " << x->get x() << endl;
cout << "y: " <K<K y << ", Fy: "KL ry << endl;

delete x;
delete vy;
return EXIT SUCCESS;

18

YW UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

CSE333, Spring 2023

Dynamically Allocated Arrays

+» To dynamically allocate an array:
= Default initialize: | type* name =

new type[size];

;thew stV vetwns & Poir\’fer
+» To dynamically deallocate an array:

s this o poicter o & Thin
" Use|delete[] name; . o';&anr awfay o‘(&-l'k:’\gsj’.’

" |tisanincorrectto use “delete name;” onan array

- The compiler probably won’t catch this, though (!) because it can’t

always tell if name* was allocated with new typel[size];
or new type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

- Result of wrong de 1 ete is undefined behavior

19

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Arrays Example (primitive)

arrays.cc

N\

r#include "Point.h"

int main () {
int stack int; /] stack Cavintislizer)
int* heap int = new int; // heap (uniadtialized)
int* heap int init = new 1int(12); // kea‘o Cvalue IZ)

int stack arr[3]; // Fauck (unmﬂw\'zeax) .
int* heap arr = new int[3]; // heap (onindralized)

(®)
int* heap arr init val = new int[3](); / heap Cvalves)
int* heap arr init 1lst = new int[1{(4, 5}; // C++11

//I’\e-“{’('m ahized—bs Wﬁ,ﬂ)

/
delete heap int; // Correc‘\'.,
delete heap int init; // corhéc+- o[
delete heap arr; // .ncovme/’" shand be odclefe

delete[] heap arr init val; // Comd

// Memor lﬁﬁ\k (S(Gl 'w?r\-__ |s‘,f _,
return EXIT SUCCE S

20

L12: C++ Class Details, Heap

YW UNIVERSITY of WASHINGTON

CSE333, Spring 2023

Arrays Example (class objects)

arrays.cc

r#include "Point.h"

int main () {

Point stack pt (1,
Point* heap pt

2) ; [shack ohjed

new Point (1, 2);

/ keo\r o_?}tc:‘—

Point* heap pt arr err new Point|[

eYrW

]{{1

new Point[2

Point* heap pt arr init 1st

//Coﬂed
//Corved_

delete heap pt;
delete[] heap pt arr init 1st;

return EXIT SUCCESS;

// AC‘," Q\AH' (of\s'\'mded \'.@«jj

&d@d’whshk < in
2}, {3, 4}};
// C++11

\

4

\

ot

21

YA UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

malloc vs. new

How often used (in C)?
How often used (in C++)?

Allocated memory for

Returns

When out of memory

Deallocating

CSE333, Spring 2023

a function an operator or keyword
often never
rarely often
anything arrays, st-ru.ct-s, OI%EE;ch,Q,WC
primitives ; 4,2
. T dwrd, T¥
avoild* Ir<!;\e|c'5)propr|ate poﬂr—1ter type
(should be cast) (doesn’t need a cast)

returns NUL L,

. (VRAVY
throws an exception ;,,

QA
O

\\/
red

free ()

deleteordelete]

22

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

@ PO" Evel‘yWheI‘e pollev.com/cse333sp

class Foo has; s at ¥ -ﬁzcs_p‘)'f-.,'
What will happen when we invoke Bar () ?

" If there is an error, (Foo::Foo(int val) { Init(val); })
how would you fix it? | Foo::~Foo() { delete foo ptr ; }
void Foo::Init(int wval) {
foo ptr = new int;
*foo ptr = val;
}
A. \ e 0Q: g rator=(const Foo& rhs) {
— .fg-n\ e\tcei" fgo%o)%ptr ; — GLEDING df,\{\bé
B. Bad delete : Init (* (rhs.foo ptr)); memoy.
return *this;
C. Memory leak) Stack
D. "WOrkS” fine void Bar () { O\, Foo_ghe_
Foo a(10); ‘ol ‘&m
E. We're lost... w0 2200
\ @ O
\ rL\S) 23

YW UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Rule of Three, Revisited

+» Now what will happen when we invoke Bar () ?

= |f there is an error,
how would you fix it?

double dclete enor -,
shalh Acfine cchor to

A\'mmt le7 alld cote spw.e
fo- qmy.ﬁ'hﬁ

rFoo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo ptr ; }

vold Foo::Init(int wval) {
foo ptr =
*foo ptr =
}

new int;
val;

Foo& Foo::operator=(const Foo& rhs)
if (&rhs != this) {
delete foo ptr ;
Init(*(rhs.foo ptr));
}

return *this;

) S flap.
void Bar () { 0\,1"”-9*0- [10)
Foo a(1l0); \>l ‘&»»F+r— synthesizer cclor
Foo b = a; ; does shallowr copy|
U y

{

CSE333, Spring 2023

24

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Extra Exercise #1

« Write a C++ function that:

= Uses new to dynamically allocate an array of strings and uses
delete[] to freeit

= Uses new to dynamically allocate an array of pointers to strings
- Assign each entry of the array to a string allocated using new
= Cleans up before exiting

- Use delete to delete each allocated string
- Usesdelete[] to delete the string pointer array

« (whew!)

25

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

BONUS SLIDES

An extra example for practice with class design and heap-
allocated data: a C-string wrapper class classed Str.

26

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Heap Member (extra example)

+ Let’s build a class to simulate some of the functionality of
the C++ string

" Internal representation: c-string to hold characters
y\u\l "\'evm?hﬁ\’\'ea\ Char ¥

+» What might we want to implement in the class?

\

de‘&w\\‘{’ C(sr\S'}ruChr = v ‘5+""‘3 'S :}0_
congtructor rom char™

Pr;r\‘\’ +0 ()S‘l'reO\W\
\Cvxs‘Hv\

Co»’\CoCLG M‘\'R) ~

> reminder: this ()oeSn‘l coorst -\-ke Awll ‘\'Crmv\(z\br
> we'll do &WQM\ (,\d-,_,a&/ Whidh 1 57».4\«

Copy Constructor

destruchs - —) |

C\ECI\ u‘, i,\"\gM\ menn .

27

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Str Class

Str.h

(4include <iostream>
using namespace std; // should replace this

class Str {

public:
Str () // default ctor
Str (const char* s); // c-string ctor
Str (const Str& s); // copy ctor
~Str(); // dtor

int length() const; // return length of string
char* c_str() const; // return a copy of st
void append (const Stré& s);

Str& operator=(const Stré& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Stré& s);

private:
char* st ; // c-string on heap (terminated by '\0')
\}; // class Str

28

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Str::append (extra example)

+» Complete the append () member function:
" char* strncpy(char* dst, char* src, size t num);

" char* strncat(char* dst, char* src, size t num);

#include <cstring>

#include "Str.h"

// append contents of s to the end of this string
void Str::append (const Str& s) |

see .S’(—Y\ CcC

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2023

Clone

2 C++11 style guide tip:

= |If you disable them, then you instead may want an explicit
“Clone” function that can be used when occasionally needed

Point_2011.h
rclass Point { l
public:
Point (const int x, const int y) : x (x), v (y) { } // ctor
void Clone (const Pointé& copy from me);
Point (Pointé& copyme) = delete; // disable cctor
Point& operator=(Point& rhs) = delete; // disable "="
private:
Y; // class Point

sanepoint.cc

Point x(1, 2); // OK
Point vy (3, 4); // OK
x.Clone (y) ; // OK

30

