
CSE333, Spring 2023L15: C++ Standard Template Library

C++ STL (part 1 of 2)
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang

Humza Lala Lahari Nidadavolu

Noa Ferman Saket Gollapudi

Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

CSE333, Spring 2023L15: C++ Standard Template Library

2

pollev.com/cse333sp

Which concept has given you the most
difficulty so far in the context of
Homework 2?

A. The data structures
B. C-string manipulations
C. POSIX I/O
D. Dynamic memory allocation
E. GDB
F. Style considerations
G. Prefer not to say

CSE333, Spring 2023L15: C++ Standard Template Library

Relevant Course Information

❖ Exercise 7 due Monday

❖ Homework 2 was due last night

▪ Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

▪ Use late days if you can’t finish & polish your submission! They
exist for a reason

❖ Homework 3 will be released by Monday, due in 3 weeks

❖ Midterm: May 4 – May 6 (1pm)

▪ Take home (Gradescope) and open notes

▪ Individual, but high-level discussion allowed (“Gilligan’s Island Rule”)

▪ No lecture next Friday (May 5)
3

CSE333, Spring 2023L15: C++ Standard Template Library

C++’s Standard Library

❖ C++’s Standard Library consists of four major pieces:

1) The entire C standard library

2) C++’s input/output stream library

• std::cin, std::cout, stringstreams, fstreams, etc.

3) C++’s standard template library (STL) ☜

• Containers, iterators, algorithms (sort, find, etc.), numerics

4) C++’s miscellaneous library

• Strings, exceptions, memory allocation, localization

4

CSE333, Spring 2023L15: C++ Standard Template Library

STL Containers ☺

❖ A container is an object that stores (in memory) a
collection of other objects (elements)

▪ Implemented as class templates, so hugely flexible

▪ More info in C++ Primer §9.2, 11.2

❖ Several different classes of container
▪ Sequence containers (vector, deque, list, ...)

▪ Associative containers (set, map, multiset, multimap,
bitset, ...)

▪ Differ in algorithmic cost and supported operations

5

CSE333, Spring 2023L15: C++ Standard Template Library

STL Containers 

❖ STL containers store by value, not by reference

▪ When you insert an object, the container makes a copy

▪ If the container needs to rearrange objects, it makes copies

• e.g., if you sort a vector, it will make many, many copies

• e.g., if you insert into a map, that may trigger several copies

▪ What if you don’t want this (disabled copy constructor or copying
is expensive)?

• You can insert a wrapper object with a pointer to the object

– We’ll learn about these “smart pointers” soon

6

CSE333, Spring 2023L15: C++ Standard Template Library

Our Tracer Class

❖ Wrapper class for an unsigned int value_

▪ Also holds unique unsigned int id_ (increasing from 0)

▪ Default ctor, cctor, dtor, op=, op< defined

▪ friend function operator<< defined

▪ Private helper method PrintID() to return
"(id_,value_)" as a string

▪ Class and member definitions can be found in Tracer.h and
Tracer.cc

❖ Useful for tracing behaviors of containers

▪ All methods print identifying messages

▪ Unique id_ allows you to follow individual instances

7

CSE333, Spring 2023L15: C++ Standard Template Library

STL vector

❖ A generic, dynamically resizable array

▪ https://cplusplus.com/reference/vector/vector/

▪ Elements are store in contiguous memory locations

• Elements can be accessed using pointer arithmetic if you’d like

• Random access is O(1) time

▪ Adding/removing from the end is cheap (amortized constant
time)

▪ Inserting/deleting from the middle or start is expensive (linear
time)

8

https://cplusplus.com/reference/vector/vector/

CSE333, Spring 2023L15: C++ Standard Template Library

vector/Tracer Example

9

vectorfun.cc

#include <iostream>

#include <vector>

#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {

Tracer a, b, c;

vector<Tracer> vec;

cout << "vec.push_back " << a << endl;

vec.push_back(a);

cout << "vec.push_back " << b << endl;

vec.push_back(b);

cout << "vec.push_back " << c << endl;

vec.push_back(c);

cout << "vec[0]" << endl << vec[0] << endl;

cout << "vec[2]" << endl << vec[2] << endl;

return EXIT_SUCCESS;

}

CSE333, Spring 2023L15: C++ Standard Template Library

Why All the Copying?

10

