
CSE333, Spring 2023L19: C++ Inheritance I

C++ Inheritance I
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang

Humza Lala Lahari Nidadavolu

Noa Ferman Saket Gollapudi

Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

CSE333, Spring 2023L19: C++ Inheritance I

Relevant Course Information

❖ Exercise 9 released this afternoon

▪ C++ smart pointers and inheritance

❖ Homework 3 is due next Thursday (5/18)

▪ Get started early!

▪ Videos for overview and demo and file debugging

❖ Midterm grading will take a while

▪ Lots of acceptable answers for reflection questions

2

CSE333, Spring 2023L19: C++ Inheritance I

Overview of Next Two Lectures

❖ C++ inheritance

▪ Review of basic idea (pretty much the same as in Java)

▪ What’s different in C++ (compared to Java)

• Static vs. dynamic dispatch – virtual functions and vtables (optional)

• Pure virtual functions, abstract classes, why no Java “interfaces”

• Assignment slicing, using class hierarchies with STL

▪ Casts in C++ (bonus material in this week’s section)

❖ Reference: C++ Primer, Chapter 15

3

CSE333, Spring 2023L19: C++ Inheritance I

Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers

4

CSE333, Spring 2023L19: C++ Inheritance I

Stock Portfolio Example

❖ A portfolio represents a person’s financial investments

▪ Each asset has a cost (i.e., how much was paid for it) and a market
value (i.e., how much it is worth)

• The difference between the cost and market value is the profit (or
loss)

▪ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g., “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments

• Cash is an asset that never incurs a profit or loss

5(Credit: thanks to Marty Stepp for this example)

CSE333, Spring 2023L19: C++ Inheritance I

Design Without Inheritance

❖ One class per asset type:

▪ Redundant!

▪ Cannot treat multiple investments together

• e.g., can’t have an array or vector of different assets

❖ See sample code in initial/ directory

6

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

CSE333, Spring 2023L19: C++ Inheritance I

Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Terminology:

▪ Mean the same things. You’ll hear both.

7

Java C++

Superclass Base Class

Subclass Derived Class

CSE333, Spring 2023L19: C++ Inheritance I

Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Benefits:

▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Others can make calls on objects without knowing which part of the
inheritance tree it is in

▪ Extensibility

• Children can add behavior

8

CSE333, Spring 2023L19: C++ Inheritance I

Design With Inheritance

9

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Asset (abstract)

GetMarketValue()

GetProfit()

GetCost()

CSE333, Spring 2023L19: C++ Inheritance I

Like Java: Access Modifiers

❖ public: visible to all other classes

❖ protected: visible to current class and its derived
classes

❖ private: visible only to the current class

❖ Use protected for class members only when

▪ Class is designed to be extended by derived classes

▪ Derived classes must have access but clients should not be
allowed

10

CSE333, Spring 2023L19: C++ Inheritance I

Class Derivation List

❖ Comma-separated list of classes to inherit from:

▪ Focus on single inheritance, but multiple inheritance possible

❖ Almost always you will want public inheritance
▪ Acts like extends does in Java

▪ Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

• Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

11

#include "BaseClass.h"

class Name : public BaseClass {

...

};

CSE333, Spring 2023L19: C++ Inheritance I

Back to Stocks

BASE DERIVED

12

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

CSE333, Spring 2023L19: C++ Inheritance I

Back to Stocks

❖ A derived class:

▪ Inherits the behavior and state (specification) of the base class

▪ Overrides some of the base class’ member functions (opt.)

▪ Extends the base class with new member functions, variables
(opt.)

13

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

dividends_

GetMarketValue()

GetProfit()

GetCost()

PayDividend()

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

CSE333, Spring 2023L19: C++ Inheritance I

Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers

14

CSE333, Spring 2023L19: C++ Inheritance I

Polymorphism in C++

❖ In Java: PromisedType var = new ActualType();

▪ var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

▪ ActualType must be the same class or a subclass of
PromisedType

❖ In C++: PromisedType* var_p = new ActualType();

▪ var_p is a pointer to an object of ActualType on the Heap

▪ ActualType must be the same or a derived class of
PromisedType

▪ (also works with references)

▪ PromisedType defines the interface (i.e., what can be called on
var_p), but ActualType may determine which version gets
invoked

15

CSE333, Spring 2023L19: C++ Inheritance I

Dynamic Dispatch (like Java)

❖ Usually, when a derived function is available for an object,
we want the derived function to be invoked

▪ This requires a run time decision of what code to invoke

❖ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

▪ Can determine what to invoke from the object itself

❖ Example:
▪ void PrintStock(Stock* s) { s->Print(); }

▪ Calls the appropriate Print() without knowing the actual type
of *s, other than it is some sort of Stock

16

CSE333, Spring 2023L19: C++ Inheritance I

Dynamic Dispatch Example

❖ When a member function is invoked on an object:

▪ The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

17

double DividendStock::GetMarketValue() const {

return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const { // inherited

return GetMarketValue() – GetCost();

}

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

CSE333, Spring 2023L19: C++ Inheritance I

Dynamic Dispatch Example

18

#include "Stock.h"

#include "DividendStock.h"

DividendStock dividend();

DividendStock* ds = ÷nd;

Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() invokes DividendStock::GetMarketValue(),

// since that is the most-derived accessible function.

s->GetProfit();

CSE333, Spring 2023L19: C++ Inheritance I

Requesting Dynamic Dispatch (C++)

❖ Prefix the member function declaration with the
virtual keyword

▪ Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

▪ This is how method calls work in Java (no virtual keyword needed)

▪ You almost always want functions to be virtual

❖ override keyword (C++11)

▪ Tells compiler this method should be overriding an inherited
virtual function – always use if available

▪ Prevents overloading vs. overriding bugs

❖ Both of these are technically optional in derived classes

▪ Be consistent and follow local conventions (Google Style Guide
says no virtual if override)

19

CSE333, Spring 2023L19: C++ Inheritance I

Most-Derived

20

class A {

public:

// Foo will use dynamic dispatch

virtual void Foo();

};

class B : public A {

public:

// B::Foo overrides A::Foo

virtual void Foo();

};

class C : public B {

// C inherits B::Foo()

};

void Bar() {

A* a_ptr;

C c;

a_ptr = &c;

// Whose Foo() is called?

a_ptr->Foo();

}

CSE333, Spring 2023L19: C++ Inheritance I

21

pollev.com/cse333sp

Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2:

a_ptr = &e;

a_ptr->Foo();

}

CSE333, Spring 2023L19: C++ Inheritance I

Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers

22

CSE333, Spring 2023L19: C++ Inheritance I

How Can This Possibly Work?

❖ The compiler produces Stock.o from just Stock.cc

▪ It doesn’t know that DividendStock exists during this process

▪ So then how does the emitted code know to call
Stock::GetMarketValue() or
DividendStock::GetMarketValue()

or something else that might not exist yet?

• Function pointers!!!

23

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;

virtual double Stock::GetProfit() const;

Stock.h

CSE333, Spring 2023L19: C++ Inheritance I

vtables and the vptr

❖ If a class contains any virtual methods, the compiler
emits:

▪ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that
class

▪ A virtual table pointer (vptr) for each object instance

• A pointer to a virtual table as a “hidden” member variable

• When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the object’s class

• Thus, the vptr “remembers” what class the object is

24

CSE333, Spring 2023L19: C++ Inheritance I

code for Point()

code for Point’s samePlace()
Point vtable:

xvtable ptr yheader

Point object

p ???

351 Throwback: Dynamic Dispatch

25

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtable[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

xvtable yheader

3DPoint object

z

3DPoint vtable:

CSE333, Spring 2023L19: C++ Inheritance I

vtable/vptr Example

26

class Base {

public:

virtual void F1();

virtual void F2();

};

class Der1 : public Base {

public:

virtual void F1();

};

class Der2 : public Base {

public:

virtual void F2();

};

Base b;

Der1 d1;

Der2 d2;

Base* b0ptr = &b;

Base* b1ptr = &d1;

Base* b2ptr = &d2;

b0ptr->F1(); //

b0ptr->F2(); //

b1ptr->F1(); //

b1ptr->F2(); //

b2ptr->F1(); //

b2ptr->F2(); //

d2.F1(); //

CSE333, Spring 2023L19: C++ Inheritance I

vtable/vptr Example

27

Base b;

Der1 d1;

Der2 d2;

Base* b2ptr = &d2;

b2ptr->F1();

// b2ptr -->

// d2.vptr -->

// Der2.vtable.F1 -->

// Base::F1()

d2.F1();

// d2.vptr -->

// Der2.vtable.F1 -->

// Base::F1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base

F1()

F2()

Der1

F1()

F2()

Der2

F1()

F2()

Base::F1()

push %rbp

...

Base::F2()

push %rbp

...

Der1::F1()

push %rbp

...

Der2::F2()

push %rbp

...

CSE333, Spring 2023L19: C++ Inheritance I

Let’s Look at Some Actual Code

❖ Let’s examine the following code using objdump

▪ g++ -Wall –g –std=c++17 -o vtable vtable.cc

▪ objdump -CDS vtable > vtable.d

28

class Base {

public:

virtual void f1();

virtual void f2();

};

class Der1 : public Base {

public:

virtual void f1();

};

int main(int argc, char** argv) {

Der1 d1;

Base* bptr = &d1;

bptr->f1();

d1.f1();

}

vtable.cc

