YW UNIVERSITY of WASHINGTON

L19: C++ Inheritance |

CSE333, Spring 2023

C++ Inheritance |
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin

Deeksha Vatwani
Humza Lala

Noa Ferman
Seulchan (Paul) Han
Tim Mandzyuk

CJ Reith

Edward Zhang
Lahari Nidadavolu
Saket Gollapudi
Timmy Yang

Wui Wu

YW UNIVERSITY of WASHINGTON L19: C++ Inheritance |

Relevant Course Information

+ Exercise 9 released this afternoon

" C++ smart pointers and inheritance

» Homework 3 is due next Thursday (5/18)
" Get started early!

= Videos for overview and demo and file debugging

» Midterm grading will take a while

= Lots of acceptable answers for reflection questions

CSE333, Spring 2023

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Overview of Next Two Lectures

+ C++ inheritance
= Review of basic idea (pretty much the same as in Java)
= What's different in C++ (compared to Java)
- Static vs. dynamic dispatch — virtual functions and vtables (optional)

- Pure virtual functions, abstract classes, why no Java “interfaces”
- Assignment slicing, using class hierarchies with STL

= Casts in C++ (bonus material in this week’s section)

+ Reference: C++ Primer, Chapter 15

w UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Lecture Outline

+» Inheritance motivation & C++ Syntax
» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Stock Portfolio Example

+~ A portfolio represents a person’s financial investments
" Each asset has a cost (i.e., how much was paid for it) and a market
value (i.e., how much it is worth)

- The difference between the cost and market value is the profit (or
loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g., “GOOG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments
-« Cash is an asset that never incurs a profit or loss

(Credit: thanks to Marty Stepp for this example)

L19: C++ Inheritance |

YW UNIVERSITY of WASHINGTON

CSE333, Spring 2023

Desigh Without Inheritance

+ One class per asset type:

= Redundant!

DividendStock

= Cannot treat multiple investments together
- e.g., can’t have an array or vector of different assets

T st b € same e
+» See samplecodeininitial/ directory

symbol symbol amount
total shares total shares GetMarketvalue ()
total cost total cost S~
current price current price [pember?
GetMarketValue () dividends __T..
GetProfit () GetMarketValue () i
GetCost () GetProfit () MJV$5
GetCost ()

w UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

“higher " on heirarchy
aseh oF subclass Superclass Base Class
“lomer” on henorchy Subclass Derived Class

S\,‘)ersd Sf’.S\.\FEersS
"= Mean the same things. You’ll hear both.

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

«» Benefits:

" Code reuse

« Children can automatically inherit code from parents

= Polymorphism
- Ability to redefine existing behavior but preserve the interface
« Children can override the behavior of the parent

- Others can make calls on objects without knowing which part of the
inheritance tree it is in

= Extensibility

« Children can add behavior

YW UNIVERSITY of WASHINGTON

L19: C++ Inheritance |

Design With Inheritance

symbol
total_shares_
total_cost_

GetProfit ()
GetCost ()

Asset (abstract)

GetMarketValue ()
GetProfit ()
GetCost ()

current price_
GetMarketValue () DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

CSE333, Spring 2023

amount_

GetMarketValue ()

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Like Java: Access Modifiers

D)

*

>

o0

)

o0

o0

public: visible to all other classes

protected: visible to current class and its derived
classes

private: visible only to the current class

Use protected for class members only when

= (Class is designed to be extended by derived classes

= Derived classes must have access but clients should not be
allowed

10

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON L19: C++ Inheritance |

Class Derivation List

+» Comma-separated list of classes to inherit from:

\

r#include "BaseClass.h"

class Name : public BaseClass {

k}; J

" Focus on single inheritance, but multiple inheritance possible
: d’“lolf(Baseld) Y)\A\ol.‘(B«;el {

+ Almost always you will want public inheritance

= Acts like extends does in Java

= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

#¢ Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

11

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Back to Stocks

symbol
symbol —

- 1 sh
total_ shares__ tiziaiscizis_
total cost — .
current orice current price

P - dividends
GetMarketValue ()
. GetMarketValue ()
GetProfit () GetProfit ()
GetCost ()
GetCost ()

BASE DERIVED

12

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Back to Stocks

Stock ..
symbol dividends
- symbol —
total_ shares__ total shares
total cost total cost_
3 current price .
current price_ — Zv : _<> - GetProfit ()
e arke atue L
GetMarketVIalue () GetProfit () 4»’ - - GetCost ()
GetProfit () GetCost () 4= PayDividend ()
GetCost ()

+ A derived class:
= |nherits the behavior and state (specification) of the base class
- some of the base class” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

13

w UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Lecture Outline

» Inheritance motivation & C++ Syntax
+» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

14

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Polymorphism in C++

X/

+ InJava: PromisedType var = new ActualType();

= var is areference (different term than C++ reference) to an
object of ActualType on the Heap

= ActualType must be the same class or a subclass of
PromisedType

% In C++: PromisedType* var p = new ActualType();
" var pisapointerto an object of ActualType on the Heap

" ActualType must be the same or a derived class of
PromlisedType

= (also works with references)

PromisedType defines the interface (i.e., what can be called on
var p), but ActualType may determine which version gets

invoked
15

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Dynamic Dispatch (like Java)

+ Usually, when a derived function is available for an object,
we want the derived function to be invoked

= This requires a run time decision of what code to invoke

+ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

= Can determine what to invoke from the object itself

Stock 7
+» Example: Dividend Sk
" void PrintStock (Stock* s) { s->Print(); }
= Calls the appropriate Print () without knowing the actual type

of *s, other than it is some sort of Stock

16

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Dynamic Dispatch Example

+ When a member function is invoked on an object:

" The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

[double DividendStock: :GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

‘nherifed faouble "DividendStock": :GetProfit () const { // inherited
ﬁmMShQ%Z return GetMarketValue () - GetCost () ;
}

'L\smuw)«, Dividend Stock :: GetMaketValue () DividendStock.cc

\.

[double Stock: :GetMarketValue () const {
return get shares() * get share price();

}

- double Stock::GetProfit () const {
return GetMarketValue () - GetCost();

} Stock.cc

17

w UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Dynamic Dispatch Example

(#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;
DividendStock* ds = ÷nd; every M46%49Mk3|nhﬁhﬁ
Stock* s = ÷nd; // why is this allowed? $PM1ﬁ~DwA%39MkSWhA&C

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ; <~\\

called o~ Dividend Shock shject
// Invokes DividendStock:/GetMarketValue ()
s—->GetMarketValue (); <

// invokes Stock::GetProfit (), since that method 1s inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue(),
// since that 1is the most-derived accessible function.
s—>GetProfit () ;

18

Requesting Dynamic Dispatch (C++)

« Prefix the member function declaration with the
virtual keyword

= Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

" This is how method calls work in Java (no virtual keyword needed)
" You almost always want functions to be virtual
» override keyword (C++11) sicilar bo @overcide in Joveor

= Tells compiler this method should be overriding an inherited
virtual function — always use if available

= Prevents overloading vs. overriding bugs

+ Both of these are technically optional in derived classes

= Be consistent and follow local conventions (Google Style Guide
says no virtual if override)

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

19

YW UNIVERSITY of WASHINGTON

Most-Derived

_

r

class A {

public:
// Foo will use dynamic dispatch
virtual void Foo();

A".'.Foo (J@

1

class B public A { \E
public: B=TFoo ()
// B::Foo overrides A::Foo
virtual void Foo () ; Y
}i <§i:yé///
class C public B {

// C inherits B::Foo()
15

J

L19: C++ Inheritance |

CSE333, Spring 2023

\.

(void Bar() f
A* a ptr;
C c;
a ptr = &c;

// Whose Foo() 1s called?

a ptr->Foo () ; //B:Foo()
}

@ has P> Aelintion

20

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

@ PO" Evel‘yWheI‘e pollev.com/cse333sp

rclass A { |
Whose Foo () is called? Lo |
virtual void Foo () ;
/@ b7
@;@)\Gf\szf za;él;{ Cla;i-B.: public A {
) /o = pu 1Cz
@ ®K ; C7 virtual void Foo () ;
I LR S .
I
Ql QZ // Ql: class C : public B {
A a ptr = &cy) g
tr->F ;
B. A D e B:s%?oé% class D : public C {
- ' /) 02: puplic: |
C. B B l A ptr = &e; virtual void Foo () ;
D. B D a:ptr—>§9po<(>; }i
\} o) | class E : public C {
E. We're lost... i

21

w UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

Lecture Outline

» Inheritance motivation & C++ Syntax
» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

22

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

How Can This Possibly Work?

+» The compiler produces Stock.o from just Stock.cc
" |t doesn’t know that DividendStock exists during this process

= So then how does the emitted code know to call
Stock: :GetMarketValue () or
DividendStock: :GetMarketValue ()
or something else that might not exist yet?

-« Function pointers!!!
Stock.h

rvirtual double Stock: :GetMarketValue () const;
virtual double Stock::GetProfit () const;

rdouble Stock: :GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit () const {
return GetMarketValue () - GetCost () ;

} Stock.cc

23

YW UNIVERSITY of WASHINGTON L19: C++ Inheritance |

CSE333, Spring 2023

vtables and the vptr

+ If a class contains any virtual methods, the compiler
emits:

= A (single) virtual function table (vtable) for the class (ﬁ per C\“ﬁ)
-« Contains a function pointer for each virtual method in the class

- The pointers in the vtable point to the most-derived function for that
class

= A virtual table pointer (vptr) for each object instance (l per 0\5)\%5*)
- A pointer to a virtual table as a “hidden” member variable

- When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the object’s class

- Thus, the vptr “remembers” what class the object is

24

W UNIVERSITY of WASHINGTON L19: C++ Inheritance | CSE333, Spring 2023

351 Throwback: Dynamic Dispatch

Point object

header |vtable ptr X Y%

Point vtable:

pe=>222 \\>
code for Point ()

3DPoint object ﬁ

code for Point’s samePlace ()

\/

header | vtable X Y zZ

_——>»| code for sayHi ()

3DPoint vtable: Iﬂ —
code for 3DPoint’s samePlace ()

Cond be Point or .
Java: / 3DPoind C pseudo-translation:

Point p = ?g?; // works regardless of what p is
return p.samePlace(q); return p->vtablel[l] (p, q):

25

YW UNIVERSITY of WASHINGTON

L19: C++ Inheritance |

CSE333, Spring 2023

vtable/vptr Example

(class Base {) (Base b;
public: Derl dil;
virtual wvoid F1(); Der Der?2 d2;
virtual wvoid F2();
}s Base* bOptr = &b;
Base* blptr = &dl1;
class Derl public Base { Base* bZ2ptr = &d2;
public:
virtual void F1(); bOptr->F1(); // Base: F10)
g bOptr->F2(); // Bas::F20)
class Der2 public Base { blptr->F1 () ; //Tknl:Fi()
public: blptr->F2(); // Bese:- F20)
virtual wvoid F2();
QL = b2ptr->F1(); // Base::FAQ)
(pb2ptr->F2(); // De2:F2()
A?@erev\ce?
_;»\dz F1(); // Base ::FA0)

26

YA UNIVERSITY of WASHINGTON

L19: C++ Inheritance |

vtable/vptr Example

dl
b2

d2

object

instances

vtables

compiled
code

CSE333, Spring 2023

-
Base b;

vptr @

Base: :F1()
push Srbp

vptr @

Base: :F2()
push S%rbp

Derl::F1()
push S$rbp

vptr @=

Der2::F2()
push Srbp

Derl dl;
Der2 d2;

Base* bZ2ptr = &d2;

b2ptr->F1() ;

// b2ptr -->

// d2.vptr -->

// Der2.vtable.Fl —-->
// Base::F1()

o ambipity

d2.F1(); L~ con op‘\’im"ze oﬁ'.
Y . r >

26t e.
// Base::F’()}kmaqﬁeamﬁz

27

YW UNIVERSITY of WASHINGTON

L19: C++ Inheritance | CSE333, Spring 2023

Let’s Look at Some Actual Code

+ Let’s examine the following code using objdump

" gt++ -Wall

—std=c++17 -0 vtable vtable.cc

" objdump -CDS vtable > vtable.d vtable.cc

(class Base {

public:
virtual void £1();
virtual void £2 () ;

I

class Derl : public Base {
public:
virtual wvoid f£1();

I

int main(int argc, char** argv) {
Derl dl;
Base* bptr = &dl;

dl.f1(); // done i hododed callg

} J

bptr_>f1 () H // (}OY‘Q W~ -"\3\\!“0—\-)-\’* V"F on V(\-aue (l’_y\"‘ry

28

