W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

@ PO" Evel‘yWhel‘e pollev.com/cse333sp

What would you value/prioritize if you
were building a networking system?

+ Open-ended word cloud!

+» Networking system: a system to handle the transfer of
information from one location to another

L22: Sockets & DNS & Client-side

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON

Sockets & DNS & Client-side

CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin

Deeksha Vatwani
Humza Lala

Noa Ferman
Seulchan (Paul) Han
Tim Mandzyuk

CJ Reith

Edward Zhang
Lahari Nidadavolu
Saket Gollapudi
Timmy Yang

Wui Wu

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Relevant Course Information

» Exercise 10 will be released today
= ex10 due next Wednesday (5/24)

" Primarily adapting existing network programming code

» Homework 3 is due Thursday (5/18)

= Usual reminder: don’t forget to tag, clone elsewhere, and
recompile (will need to copy libhw1.a and libhw?2.a)

» Homework 4 will be released on Friday (5/19)

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side

Lecture Outline

+» Network Programming
= Sockets API
" Network Addresses
= DNS Lookup

+ Client-side (time permitting)

CSE333, Spring 2023

w UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Files and File Descriptors

+» Remember open (), read(),write (), and
close ()?

= POSIX system calls for interacting with files
= open () returns a file descriptor

- An integer that represents an open file

- This file descriptor is then passed to read (), write (), and
close ()

" |nside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as
the file position

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Networks and Sockets

+» UNIX likes to make all 1/0 look like file I/O

" Youuse read () andwrite () to communicate with remote
computers over the network!

= A file descriptor use for network communications is called a
socket

= Just like with files:

« Your program can have multiple network channels open at once

- You need to pass a file descriptor to read () and write () tolet the
OS know which network channel to use

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

File Descriptor Table

OS’s File Descriptor Table for the Process

128.95.4.33 File Type Connection

Descriptor

Web Server
0 pipe stdin (console)
1 pipe stdout (console)
2 pipe stderr (console)
3 TCP local: 128.95.4.33:80

socket | remote: 44.1.19.32:7113

I=
= 5 file index.html
(]
E 8 file pic.png
/7 9 TCP local: 128.95.4.33:80

Can have multiple
files and network . [KelElgLs
connections open __ —

socket | remote: 102.12.3.4:5544

client

0,2 always start as
stdin, stdout & stderr.

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Types of Sockets

g+ Stream sockets - we ulll focus here n 333
" For connection-oriented, point-to-point, reliable byte streams
- Using TCP, SCTP, or other stream transports

+» Datagram sockets

" For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

+ Raw sockets
" For layer-3 communication (raw IP packet manipulation)

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Stream Sockets

+ Typically used for client-server communications
= Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients
= Can also be used for other forms of communication like peer-to-

peer

1) Establish connection:
: : . —

3) Close connection:

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Datagram Sockets

+ Often used as a building block
= No flow control, ordering, or reliability, so used less frequently
= e.g., streaming media applications or DNS lookups

* host

* host

1) Create sockets:

host

2) Communicate:

Iél III

10

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

The Sockets API

+ Berkeley sockets originated in 4.2BSD Unix (1983)

" |tis the standard API for network programming
- Available on most OSs

47® Written in C

« POSIX Socket API

= Aslight update of the Berkeley sockets API
- A few functions were deprecated or replaced
- Better support for multi-threading was added

11

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Socket API: Client TCP Connection

+» We'll start by looking at the APl from the point of view of
a client connecting to a server over TCP

+ There are five steps:
1) Figure out the IP address and port to which to connect % fbaaf
wed { 2) Create a socket

3) Connect the socket to the remote server
,;¢e§ 4) read () andwrite () data using the socket

b 4
bfge\,(el 5) Close the socket
e

12

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Step 1: Figure Out IP Address and Port

+» Several parts:
= Network addresses
® Data structures for address info C data structures @

= DNS (Domain Name System) — finding IP addresses

13

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

IPv4 Network Addresses

+» An IPv4 address is a 4-byte tuple (2* OM“’“@>

" For humans, written in “dotted-decimal notation”
" e.g.,12895.4.1 (80:5£:04:01 in hex)

» |Pv4 address exhaustion
" There are 232 = 4.3 billion IPv4 addresses

" There are = 8.01 billion people in the world (February 2023)

14

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

IPv6 Network Addresses

« An IPv6 address is a 16-byte tuple (2328 adaressq)

= Typically written in “hextets” (groups of 4 hex digits)
() « Can omit leading zeros in hextets
(9 + Double-colon replaces consecutive sections of zeros

" e.g.,2d0130db8: £188£0000:0600:0000:0000:1£33
. Shorthand: 2d01:db8:£188::1£33

—

= Transition is still ongoing

 |Pv4-mapped IPv6 addresses
— 128.95.4. 1 mappedto : : ££££:128.954.10or : : ££££:805£:401

 This unfortunately makes network programming more of a headache

®

15

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Aside: IP Address Allocation

MAP o me INTERNET

THE IPvH SPACE, 2006

L% P RS
N - g

¢ T—‘P ‘E)EC 9 1C'SC e It 235 23 231
FORD PON-RYN|

n 7 " 1t
pet APRE MIT DISA

¥ Sy 24 i3

0

tn) 'DoD
%L l':lﬂ.

This map is outdated

(2006), as all IPv4

addresses have been

allocated, but what

interesting observations
% T can you make?

@ : | = Geographic regions?

i Ty ®™ Companies?

I ™ 13 [3%]

v IBA\

£? 59 s’c” 15
SITA MERe B NoRsK NewT
s o5 A Y

BOEING duPwr DLA

US DE?ARIMD!T
of DEFENSE 9

m % N rmsz uy MNc

HANM JW
%& RADo INET

P\Q\P\ PP\C {F-/C
L ns

~°
» "
NORTH
AMERICA

VAR IALS

172

QEG (STRARS

ire 155 " L 149 "

1y

(L] o Ix 154 53 14 13 e

’ https://xkcd.com/195/

e e 16

https://xkcd.com/195/

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Aside: IP Address Allocation

+ Global IP address allocation (among other things) is

overseen by the Internet Assighed Numbers Authority
(IANA)

= “Currently it is a function of ICANN, a nonprofit private American
corporation established in 1998 primarily for this purpose under a
United States Department of Commerce contract.
Before it, IANA was administered principally by
Jon Postel at [USC], under a contract... with the
United States Department of Defense.”

+» Does this make sense? Is this fair?
= Historically, it does (Internet “born” in the US)

= Probably not entirely fair though — what values and priorities are

encoded in this allocation?
17

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Computing Standards and Protocols

+» We’'ve seen tons of these! Many more exist!
= ASCII, IEEE 754, POSIX, IP, TCP/UDP, HTTP, etc.
" These have profound and long-lasting effects

» Standards always encode the priorities of their creators
into data
= e.g., ASCII prioritizes English and memory efficiency

= e.g., IP addresses allocated with a very US-centric view, often
granting larger-than-necessary swaths to the “big players” of the
time

» Who was in the room when it happened? (i.e., creation)
» Who has a seat at the table? (i.e., maintenance)

18

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Linux Socket Addresses

+ Structures, constants, and helper functions available in
#include <arpa/inet.h>

+» Addresses stored in network byte order (big endian)

+» Converting between host and network byte orders:
" ulnt32 t Bto&l(uint32_t hostlong) ;
" uint32 t ntohl (uint32 t netlong);

- ‘h’ for host byte order and ‘n’ for network byte order
- Also versions with ‘s’ for short (uint16 t instead)

«+ How to handle both IPv4 and IPv6?

® Use C structs for each, but make them somewhat similar

= Use defined constants to differentiate when to use each:(my other Sodzd)

AF INET forIPv4and AF INET6 for IPv6 Ypes exist!

YW UNIVERSITY of WASHINGTON

L22: Sockets & DNS & Client-side

IPv4 Address Structures

CSE333, Spring 2023

struct 1n addr {
uint32 t s addr;
b

struct sockaddr in {

b o

// IPv4d 4-byte address

sa family t sin family;
\\gin_port_t sin port;

struct in addr sin_ addr;
unsigned char sin zero[8]

’

// Address in network byte order

// An IPv4-specific address structure

// Address family:

// Port in network byte order

// IPv4 address
// Pad out to 16 bytes

(16

it)

struct sockaddr in:

family| port

addr

Zzero

0 2 4

16

20

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

@ PO" Evel‘yWheI‘e pollev.com/cse333sp

What will the first 4 bytes of the struct

sockaddr in be?

+ Represents a socket connected to 198.35.26.96
(c6:23:1a:60) on port 80 (0x50) stored on a little-endian
machine

" AF INET = 2 sin_fanily sin_ port St - oddr
- 6xL (host) OO (retuork) Oxcl23la 60 (nétuork)

0|02 | OOl oo |50 | c6| 23| 1a| 6O
- — B .

Ox00025000 8/CO |00 |CO || O|O| 0| ©

0x 02 00 00 50 %0 Chost)
. 0x 02 00 50 00 Sn-Eere
We're lost...

molojw >

21

w UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side

IPv6 Address Structures

// IPv6é 16-byte address
,struct 1n6_addr

uint8 t s6 addr[lo];
b7

struct sockaddr in6 {
sa family t sin6o family;

Mstruct in6 addr siné6_addr;

b g

// Address 1in network byte order

// An IPvé6-specific address structure

// Address family:

// Port number

// IPvé flow infprmation
// IPv6 address

// Scope ID

in port t sin6 port;
\\\uint32_t sin6o flowinfo;

uint32 t sin6 scope 1d;

A o e

struct sockaddr 1iné6:

addr

famport] flow

scope

0 2 4 8 <&

0((&7/

et (6 bytes > 24 28

CSE333, Spring 2023

22

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Generic Address Structures
S‘h"ui\' SBC\(O(M\'*"

D

r// A mostly-protocol-independent address structure.
// Pointer to this 1is parameter type for socket system calls.
struct sockaddr {
sa family t sa family; // Address family (AF * constants)
char sa data([l4]; // Socket address (size varies
// according to socket domain)

b g

// A structure big enough to hold either IPv4 or IPvé structs
struct sockaddr storage { (b lest 28 bytes)
sa family t ss family; // Address family

// padding and alignment; don’t worry about the details
char ss padl[SS PAD1SIZE];
into4 t ss align;
char ss pad2[SS PAD2SIZE];
i

\ S

" Commonly create struct sockaddr storage, then pass
pointer castas struct sockaddr* to connect ()

23

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring

2023

Address Conversion odpdt
6ddress S‘{'ril\s <$*""LT n_o P ¥
Farmily s ePrere/dThb»\ Stad inb_oddr®

< [int inet pton(int af, const char* src, void* dst);)

= Converts human-readable string representation (“presentation”)
to network byte ordered address

= Returns 1 (success), 0 (bad src), or =1 (error)

\

#%nclude <stdlip.h> genaddr.cc
#include <arpa/inet.h>

int main(int argc, char** argv) {
struct sockaddr in sa; // IPv4
struct sockaddr in6 sa6; // IPvé6

// IPv4 string to sockaddr in (192.0.2.1 = C0:00:02:01).
inet pton (AF INET, "192.0.2.1", &(sa.sin _addr));

// IPv6 string to sockaddr iné.
inet pton (AF INET6, "2001:db8:63b3:1::3490", & (sa6.sin6 _addr));

return EXIT SUCCESS;

o

24

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Address Conversion

add ress et in_addr™ 6r
‘Fam'nly Strud fné-dﬂfk

+ | const char* inet ntop(int af, const void* src,
char* dst, socklen t size);

= Converts network addr in src into buffer dst of size size

" Returns dst on success; NULL on error

\

#include <stdlip.h> genstring.cc
#include <arpa/inet.h>

int main(int argc, char** argv) {
struct sockaddr in6 sab6; // IPv6
char astring[INET6 ADDRSTRLEN] ; // IPvé6

// IPv6 string to sockaddr iné.
inet pton (AF INET6, "2001:0db8:63b3:1::3490", &(sab.sin6_addr));

// sockaddr in6é to IPvé string. gr INET_ ADDRSTR LEN
inet_ntop(AF_INET6, & (sab.sin6 addr), astring, NETo ADDRSTRLEN) ;
std::cout << astring << std::endl; //20901:dLg: 63631 - 3490

return EXIT SUCCESS;

YW UNIVERSITY of WASHINGTON

L22: Sockets & DNS & Client-side

Domain Name System

+ People tend to use DNS names, not IP addresses

" The Sockets API lets you convert between the two
" |t's a complicated process, though:
-« A given DNS name can have many IP addresses

- Many different IP addresses can map to the same DNS name

— An IP address will reverse map into at most one DNS name

- A DNS lookup may require interacting with many DNS servers

+ You can use the Linux program “dig” to explore DNS
" dig @server name type (+short)
- server: specific name server to query
- type: A(IPv4), AAAA (IPv6), ANY (includes all types)

CSE333, Spring 2023

26

YA UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

DNS Hierarchy

Root
Name Servers

-~ 7 ~

-~
4
/ \ ~

N

7 J -
Cn [3N BN] .
Domain Servers
7 1 N 7 1 N
b E'y b E'y

org
/7 N\ S
/ \ ~

~ \ \ ~
/ \ SS / \ SS
/ \ - ~ / \ - ~
"4 ~ Sa 4 ~ Sa
facebook google IECEXIN netflix apache wikipedia JEECEX
Ren \:A 7 /7 \ S o R \:A R \:A / \ R \:A
v 71 \ S ¥ ¥ / \ ¥
P / \ L / \

/ / \ N / \
P4 ® < S ® §
docs mail news coe news coe

27

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Resolving DNS Names

+» The POSIX way is to use getaddrinfo ()

= A complicated system call found in #include <netdb.h>

| int getaddrinfo (const char* hostname,
const char* service,

const struct addrinfo* hints,f——~\\\\\
struct addrinfo** res¥
Y - ad ~

- Tellgetaddrinfo () which host and port you want resolved

— String representation for host: DNS name or IP address
- Setup a “hints” structure with constraints you want respected

- getaddrinfo () gives you a list of results packed into an
“addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

- Freethe struct addrinfo later using freeaddrinfo ()
f‘ecursively frees res linked list

28

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

getaddrinfo O " dorth core” options

+» getaddrinfo () arguments:
" hostname —domain name or IP address string

" service —port#(e.g., "80") orservice name (e.g., "www")
ot NULL/nullptr

" hints —filter results

struct addrinfo {
int ai flags; // additional flags

¥ int ai family; // AF INET, AF INET6, (AF UNSPEC
int ai socktype; // SOCK_STREAM, SOCK _DGRAM, (0)
int ai protocol; // IPPROTO TCP, IPPROTO UDP, (0)
size t ai addrlen; // length of socket addr in bytes

¥ struct sockaddr* al addr; // pointer to socket addr
char* ai canonname; // canonical name

¥« struct addrinfo* ai next; // can form a linked list

I

29

w UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

DNS Lookup Procedure

struct addrinfo {
int ai flags; // additional flags
int ai_ family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK STREAM, SOCK DGRAM, O
int ai_protocol; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked list

} i

1) Createa struct addrinfo hints

2) Zeroout hints for “defaults”

3) Set specific fields of hints as desired

4) Callgetaddrinfo () using &§hints

5) Resulting linked list *re s will have all fields appropriately set

P imane s

30

CSE333, Spring 2023

w UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side

Socket API: Client TCP Connection

+ There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

31

w UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side

Step 2: Creating a Socket

CSE333, Spring 2023

D)

L)

* | int socket(int domain, int type, int protocol);

" Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error

socket.cc

7

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
if (socket fd == -1) { / chek o erro-

return EXIT FAILURE;

}
close (socket £d); // close when done
return EXIT SUCCESS;

int socket fd = socket (AF INET, SOCK STREAM, O0);

std: :cerr << strerror (errno) << std::endl;

\

32

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Step 3: Connect to the Server

+ The connect () system call establishes a connection to

usual I y: S‘l’ el sockaddy_ 5'1'3(6»3 e sS,

a remote host reegret - cast<sekatdde ¥y (b5s)

B | int connect(int sockfd, const struct sockaddr* addr,
socklen_t&ddrlen,\s

\

- sockfd: Socket file description from Step 2 sockel ()

- addr and addrlen: Usually from one of the address structures

. . getaddrints ()
returned by getaddrinfo in Step 1 (DNS lookup) N

« Returns 0 on success and -1 on error

+» connect () may take some time to return
" Itis a blocking call by default (Lootts sn on evort bebre rdwn’m_g)

" The network stack within the OS will communicate with the
remote host to establish a TCP connection to it
« This involves ~2 round trips across the network

33

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Connect Example

« See connect.cc

[// Get an appropriate sockaddr structure.
struct sockaddr storage addr;

size t addrlen;

LookupName (argv[1l], port, a@ & .

// Create the socket.

int Gocket fd)= socket (addr.ss \family, SOCK STREAM,

(socket fd == -1) {

cerr << "socket () failed: " <<
return EXIT FAILURE;

// does the 5€'|'¢MVP\"FQC) (a\)

0)

trerror (errno) << endl;

// Connect the socket to the remote host.

int res = connect (sovcket fd,
reinterpret cast<sockaddr*>(&addr),
addrlerns—
1f (res == -1) {
cerr << "connect () failed: " << strerror (errno) << endl;
}
\ J

34

w UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Step 4: read ()

+ If there is data that has already been received by the
network stack, then read will return immediately with it
" read () might return with /ess data than you asked for

+ If there is no data waiting for you, by default read ()

will block until something arrives

= How might this cause deadlock? serer § cliest hae no data B vend, bt bsth all g ()

= Can read () return 0? Yes, if comedion is closed
’\I{)(Ne‘fwrk T/D

" rf@

‘\'v. r\/\IO\\V\e

evsds
(i) e\’e o CM+]/cw;\
L__—J e"‘q \\/ Aepeww 36

CSE333, Spring 2023

w UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side

Step 4: write ()

+» write () queuesyour datain a send buffer in the OS

and then returns
" The OS transmits the data over the network in the background

" When write () returns, the receiver probably has not yet
received the data!

+ If there is no more space left in the send buffer, by default
write () will block

37

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Read/Write Example

+ See sendreceive.cc

[while (1) {
int wres = write(socket fd, readbuf, res);
1f (wres == 0) {
cerr << "socket closed prematurely" << endl;
close (socket fd);
return EXIT FAILURE;
}
1f (wres == -1) {
1f (errno == EINTR)
continue;
cerr << "socket write failure: " << strerror (errno) << endl;
close (socket fd);
return EXIT FAILURE;
}

break;

38

W UNIVERSITY of WASHINGTON L22: Sockets & DNS & Client-side CSE333, Spring 2023

Step 5: close ()

“|1nt close(int fd);

= Nothing special here —it’s the same function as with file I/O

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

39

