W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

@ PO" EverVWhere pollev.com/cse333sp

About how long did Exercise 10 take you?

mmo oW

[2, 4) hours

[4, 6) hours

[6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON

Introduction to Concurrency

L25: Intro to Concurrency

CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin

Deeksha Vatwani
Humza Lala

Noa Ferman
Seulchan (Paul) Han

Tim Mandzyuk

CJ Reith

Edward Zhang
Lahari Nidadavolu
Saket Gollapudi
Timmy Yang

Wui Wu

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Relevant Course Information

» Homework 4 due 1 week from tomorrow (6/1)
= Partner form due end of tomorrow
" You can still use two late days (until Sunday, 6/4)

» Exercise 11 due Friday @ 11am

» Exercise 12 (the last exercise™) released today
= Consumer-producer concurrency

= Released early (Friday’s lecture will be helpful)
" Due Wednesday 5/31 @ 11 am

- Final Exam (Monday, 6/5 — Wednesday, 6/7 @ 12 noon)
= Same policies as the midterm
= ex8-ex12, hw3-hw4, overall course questions

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Some Common HW4 Bugs

+ Your server works, but is really, really slow
" Check the 2"¥ argument to the QueryProcessor constructor

+ Funny things happen after the first request

"= Make sure you’re not destroying the HTTPConnection object
too early (e.g., falling out of scope in a while loop)

+ Server crashes on a blank request

= Make sure that you handle the case that read () (or
WrappedRead ()) returns O

w UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Lecture Outline

+» From Query Processing to a Search Server
+» Concurrency and Concurrency Methods

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Building a Web Search Engine

+ We have:

= Some indexes
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A query processor
- Accepts a query composed of multiple words
- Looks up each word in the index
- Merges the result from each word into an overall result set

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Search Engine Architecture

index
file
index query ,
. > client
file processor
index
file

YW UNIVERSITY of WASHINGTON

L25: Intro to Concurrency

Sequential Search Engine (Pseudocode)

CSE333, Spring 2023

(doclist Lookup (string word) {
bucket = hash (word);

hitlist = file.read(buckg{;:—ﬁ\\\\

foreach hit in hitlist { K\Aisk 1/o
doclist.append(file.read (hit));

}

return doclist;

}

main () {

SetupServerToReceiveConnections () ;
while (1) {

| L/\
string query words[] = GetNextQuery (); network T(0
results = Lookup (query words[0]);

foreach word in query[l..n] {

results =

}
Display (results) ; N pefwork HO
}

results.intersect (Lookup (word)) ;

\.

See searchserver sequential/

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Why Sequential?

+» Advantages:
= Super(?) simple to build/write

+ Disadvantages:

" |Incredibly poor performance
« One slow client will cause all others to block
- Poor utilization of resources (CPU, network, disk)

CSE333, Spring 2023

L25: Intro to Concurrency

=
O
T.
)
z.
T
v
<
=
S
=
v
o
[S&]
=
=z,
=)

: @ Multi-Word Query

Execution Timeline

[J
() Axond3xeN3eD

O/I aomisu

() Aetdsta

() 30®sI=3uUuT S]1TNsSaI

O/I STP

ravenols

() dnyoor

() 30®sI=3uUuT S]1TNsSaI

O/I ¥STP

whale

() dnyoorT

O/I ¥STP

() dnyoor

oeqnm

O/I Iomisu

() AxzondaxsN3Ie®D
() uteuw

Y-0rd query:

query

10

YW UNIVERSITY of WASHINGTON L25: Intro to Concurrency

What About I/O-caused Latency?

CSE333, Spring 2023

+ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

+

Numbers Everyone Should Know
L1l cache reference OIS In'S
Branch mispredict Sllints
L2 cache reference 7 ns
Mutex lock/unlock LI gl
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory i VR (010 o=
Round trip within same datacenter S ORORINnts
Disk seek 1L0) - (000 - @00 @E
= Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA ILS(0) 4 @005 OX0) S
Google -

11

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Execution Timeline: (Loosely) To Scale

@) @)
>~ ~
@) @) @)
= N < NG =
v H H H RV,
g IV IV, v g
2 0 0 0 2
5 — - — 5
0 T T S 5
- <

main ()

12

YA UNIVERSITY of WASHINGTON L25: Intro to Concurrency

Multiple (Single-Word) Queries

is the Query Number
#.a-> GetNextQuery ()

#.b -> network 1/0O

#.c ->Lookup () & file.read()
#.d -> Disk I/O
#H.e->Intersect ()
& Display ()

query 1

CSE333, Spring 2023

13

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Multiple Queries: (Loosely) To Scale

query 1

14

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Sequential Issues

Only one I/O request at
The CPU is idle most a time is “in flight”

of the time! /

(picture not to scale)

Queries don’t run until
earlier queries finish

query 1

15

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON L25: Intro to Concurrency

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one
= And clients queue up behind the queries ...

*

+» Even while processing one query, the CPU is idle the vast
majority of the time

" |tis blocked waiting for |/O to complete
- Disk I/O can be very, very slow (10 million times slower ...)

L)

+ At most one I/O operation is in flight at a time

= Missed opportunities to speed I/O up
- Separate devices in parallel, better scheduling of a single device, etc.

16

w UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Lecture Outline

+» From Query Processing to a Search Server
+» Concurrency and Concurrency Methods

17

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Concurrency

+» Concurrency != parallelism

= Concurrency is working on multiple tasks with overlapping
execution times

= Parallelism is executing multiple CPU instructions simultaneously

« Our search engine could run concurrently in multiple
different ways:

= Example: Issue I/O requests against different files/disks
simultaneously

- Could read from several index files at once, processing the 1/0 results
as they arrive

= Example: Execute multiple queries at the same time

- While one is waiting for /O, another can be executing on the CPU

18

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

A Concurrent Implementation

+» Use multiple “workers”

= As a query arrives, create a new worker to handle it

- The worker reads the query from the network, issues read requests
against files, assembles results and writes to the network

- The worker alternates between consuming CPU cycles and blocking
onl/O

" The OS context switches between workers
« While one is blocked on I/O, another can use the CPU
- Multiple workers’ 1/0O requests can be issued at once

+ So what should we use for our “workers”?

19

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Worker Option 1: Processes (Review)

+ Processes can fork “cloned” processes that have a
parent-child relationship

= Work almost entirely independent of each other

+» The major components of a process are:
= An address space to hold data and instructions
= Open resources such as file descriptors
= Current state of execution

- Includes values of registers (including program counter and stack
pointer) and parts of memory (the Stack, in particular)

20

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Why Processes?

+» Advantages:

" Processes are isolated from one another
- No shared memory between processes
- If one crashes, the other processes keep going

"= No need for language support (OS provides fork)

+ Disadvantages:
= A lot of overhead during creation and context switching

= Cannot easily share memory between processes — typically must
communicate through the file system

21

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Worker Option 2: Threads

+» From within a process, we can separate out the concept

of a “thread of execution” (thread for short)

® Processes are the containers that hold shared resources and
attributes
- e.g., address space, file descriptors, security attributes

"= Threads are independent, sequential execution streams (units of
scheduling) within a process

oS

- e.g., stack, stack pointer, program counter, registers '

Ah e ds

thread ? § g
l

—

22

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Threads vs. Processes

Stack Stack e Stack,

parent

1 = parent — 1 1 ~ ild

I I !

Shared Libraries fork () Shared Libraries Shared Libraries
Heap (malloc/free) Heap (malloc/free) Heap (malloc/free)
Read/Write Segments Read/Write Segments | | Read/Write Segments
.data, .bss .data, .bss .data, .bss
Read-Only Segments Read-Only Segments Read-Only Segments
.text, .rodata .text, .rodata .text, .rodeta i
>

pakent

23

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Threads vs. Processes

P
BE

paxent: pakent:

24

YW UNIVERSITY of WASHINGTON L25: Intro to Concurrency

Multi-threaded Search Engine (Pseudocode)

CSE333, Spring 2023

(main() {
while (1) {
string query words[] = GetNextQuery();
CreateThread (ProcessQuery (query words)) ;

}

)

/

[doclist Lookup (string word) {
bucket = hash (word);

hitlist = file.read (bucket);
foreach hit in hitlist

Display (results);
}

\

doclist.append(file.read (hit)); A“VW3AM\NQSPQ++M6
return doclist: code into a function,
} and create a thread
| that invokes i+
ProcessQuery (string query words[]) {
results = Lookup (query words[0]);
foreach word in query[l..n]
results = results.intersect (Lookup (word)) ;

25

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Multl-thr?aded Search Engine (Execution)

(s‘i’l\l One

Note how owly ove
thread uses any
specific resource at a - query 3

time. (thread D

The OS schedules all
of +his for us! ©

query 2
(threas 2)

Gy

no Ove(lG.P,‘ C,Vu l"\w 40 .S\»l\ be"‘\ﬂec’\ %MAY

26

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Why Threads?

+» Advantages:
"= You (mostly) write sequential-looking code

" Less overhead than processes during creation and context
switching

" Threads can run in parallel if you have multiple CPUs/cores

+ Disadvantages:

" If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug
" Threads can introduce overhead

- Lock contention, context switch overhead, and other issues

" Need language support for threads

27

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Alternate: Non-blocking 1/0

+ Reading from the network can truly block your program

= Remote computer may wait arbitrarily long before sending data

+ Non-blocking 1/0 (network conoIe)

= Your program enables non- bIockmg 1/O on its file descriptors

" Your program issues read () and write () system calls

€Vyinp == EUQLLD BLOCK)

" Program can ask the OS which file descriptors are

readable/writeable sdetO o poll()

- If the read/write would block, the systeméall returns immediately

- Program can choose to block while no file descriptors are ready

28

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Alternate: Asynchronous I/O

» Using asynchronous I/O, your program (almost never)
blocks on 1/0

» Your program begins processing a query

= When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

"= The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

" When data becomes available, the OS lets your program know by
delivering an event

29

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Event-Driven Programming

+ Your program is structured as an event-loop

\

[void dispatch (task, event) {

switch (taSk. State) { L_— bl\d\' we Ao o wl\ere wWe afe n FfO&"‘V‘\ (“'ddf’)
case READING FROM CONSOLE: o \h& ewd came in,
query words = event.data;

async_read (index, query words[0]); & asynchronows noticeto S
task.state = READING_FROM_INDEX;
return;

case READING_FROM_INDEX:

}

0 / N
while (1) { L/-\ Of sendy evcn'h ML 45 pﬁxﬂf oS ‘H\ey occuq.-(’im.sl«
event = 0OS.GetNextEvent () ;

task = lookup (event) ;
dispatch (task, event);

30

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Asynchronous, Event-Driven

is the Query Number
#.a -> GetNextQuery ()
#.b -> network 1/0
#.c ->Lookup () & file.read ()
#.d -> Disk 1/0
H.e->Intersect ()
& Display ()

ASE
O\(\/V\dnror\wj
call

CPW :

31

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Why Events?

+» Advantages:
= Don’t have to worry about locks and race conditions

" For some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

« One event handler for each Ul event

+ Disadvantages:

= Can lead to very complex structure for programs that do lots of
disk and network 1/0

- Sequential code gets broken up into a jumble of small event handlers
« You have to package up all task state between handlers

32

W UNIVERSITY of WASHINGTON L25: Intro to Concurrency CSE333, Spring 2023

Outline (next two lectures)

« We’ll look at different searchserver implementations
" Concurrent via dispatching threads —pthread create ()

" Concurrent via forking processes — fork ()

» Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

33

