W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

@ PO" EveryWheI‘e pollev.com/cse333sp

What has been your favorite topic group

so far?
A.

Data Structures: arrays, structs, containers
Object-Oriented Programming: classes, inheritance
Modularization: compilation, interfaces, templates
1/0: files, buffering, network programming
Concurrency

. | prefer not to say

GMMmMOO®

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON

Concurrency: Processes

L27: Concurrency and Processes

CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin

Deeksha Vatwani
Humza Lala

Noa Ferman
Seulchan (Paul) Han
Tim Mandzyuk

CJ Reith

Edward Zhang
Lahari Nidadavolu
Saket Gollapudi
Timmy Yang

Wui Wu

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Relevant Course Information

» Homework 4 due Thursday (6/1) @ 11:59 pm
= Submissions accepted until Sunday (6/4) @ 11:59 pm

» Course evaluations due Sunday night

= Please fill them out. They help all staff members improve their
skills as educators and allow us to improve the course for future
offerings. ©

» Final starts Monday (6/5), closes Wednesday (6/7) @ 1pm
" Ed post this evening with details

» Friday’s lecture will be fun!
= Writing fast(er) code, dog pictures, attempts at humor
= Competition announcement with a prize sponsored by ACE

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Outline

« We’ll look at different searchserver implementations
= Sequential
" Concurrent via forking threads —pthread create ()
= Concurrent via forking processes — fork ()

+» Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Why Concurrent Processes?

+» Advantages:

" Processes are isolated from one another
- No shared memory between processes
- If one crashes, the other processes keep going

"= No need for language support (OS provides fork)

+ Disadvantages:

" Processes are heavyweight
- Relatively slow to fork

- Context switching latency is high
= Communication between processes is complicated

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Process Isolation

+ Process Isolation is a set of mechanisms implemented to
protect processes from each other and protect the kernel
from user processes.

" Processes have separate address spaces
" Processes have privilege levels to restrict access to resources
= |f one process crashes, others will keep running

+ Inter-Process Communication (IPC) is limited, but possible
" Pipesviapipe ()
= Sockets via socketpair ()

" Shared Memory via shm open ()

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Creating New Processes (Review)

pid t fork();

" Creates a child process that is an exact clone (except threads) of
the current/parent process

® Child process has a separate virtual address space from the parent

» fork () has peculiar semantics

" The parent invokes fork ()

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Creating New Processes (Review)

pid t fork();

" Creates a child process that is an exact clone (except threads) of
the current/parent process

® Child process has a separate virtual address space from the parent

» fork () has peculiar semantics

" The parent invokes fork ()
" The OS clones the parent

clone

~ -

ON}

YA UNIVERSITY of WASHINGTON L27: Concurrency and Processes

CSE333, Spring 2023

Creating New Processes (Review)

« | p1d t fork():;

" Creates a child process that is an exact clone (except threads) of
the current/parent process

® Child process has a separate virtual address space from the parent

+» fork () has peculiar semantics
" The parent invokes fork ()

" The OS clones the parent

= Both the parent and the child child pid
return from fork

- Parent receives child’s pid
 Child receives a 0

YW UNIVERSITY of WASHINGTON

fork () and Address Spaces

Fork causes the OS
to clone the
address space

" The copies of the
memory segments are
(nearly) identical

" The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

L27: Concurrency and Processes

Stack

SP=>

l
I

CSE333, Spring 2023

Stack

Shared Libraries

l
I

I

Shared Libraries

Heap (malloc/free)

I

Read/Write Segment
.data, .bss

Heap (malloc/free)

Read-Only Segment
.text, .rodata

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

PARENT

fork ()

CHILD
10

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Zombies (Review)

+ When a process terminates, its resources (e.g., its address
space) hang around as the process sits in a zombie state

" Process terminates by return frommain or calling exit ()

+» A zombie process needs to be reaped

"= Done automatically when its parent process terminates

= Can be done explicitly by its parent process by calling wait () or
waitpid (), which also returns the status code

= |f the parent process terminates before the child becomes a
zombie, then init/systemd is responsible for reaping it

+ See fork example.cc

"= ps -u displays the user’s currently running processes
11

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Main Uses of fork

+ Fork a child to handle some work
= e.g., server forks to handle a new connection

= e.g., web browser forks to render a new website .
(for security purposes)

+ Fork a child that then starts a new program via execv

" e.g., ashell forks and starts the program you want to run

= e.g., the 333 grading scripts fork and exec your
executable

+ Fork a background (“daemon”) process that runs
independently

12

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

How Fast is fork () ?

+ See fork latency.cc

+» ~0.26 milliseconds per fork*

= .. maximum of (1000/0.5) = 3,800 connections/sec/core
= ~332 million connections/day/core

« This is fine for most servers

- Too slow for super-high-traffic front-line web services

— Facebook served ~750 billion page views per day in 2013
Would need 2-3k cores just to handle fork (), i.e. without doing any work

for each connection

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ...

Tested on attu4 (3/5/2022)

13

YW UNIVERSITY of WASHINGTON L27: Concurrency and Processes

How Fast is pthread create()?

+ See thread latency.cc

+» ~0.02 milliseconds per thread creation*
®= ~13x faster than fork ()

= .. maximum of (1000/0.02) = 50,000 connections/sec/core
= ~4.3 billion connections/day/core

Mush faster, but writing safe multithreaded code can be serious
voodoo, as we’ve seen

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ..., but will typically be an order of magnitude faster than fork()
Tested on attu4 (3/5/2022)

CSE333, Spring 2023

14

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Concurrent Server with Processes

+ The parent process blocks on accept (), waiting for a
new client to connect

" When a new connection arrives, the parent calls fork () to
create a child process

" The child process handles that new connection and exit ()’s
when the connection terminates

+ How do we avoid zombie processes from consuming all of
our memory?
= Option A: Parentcallswait () to “reap” children
= QOption B: Use a double-fork trick

15

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

16

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

o
%
G
g

17

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

> fork () child

18

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

: > fork () grandchild

19

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

| client g B // Grandenild

i child exit ()’s/parentwait ()’s

whewn parent wait()’s
for child, the child will
be cleaned up

20

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

m parent closes its
client connection

21

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

22

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

:; fork () child

~< fork () grandchild
~exit ()

23

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

24

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Double-fork Trick

l— .
+— 0

25

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

@ PO" Evel‘yWheI‘e pollev.com/cse333sp

What will happen when one of the
grandchildren processes finishes?

A.

. Zombie until grandparent reaps

B
C. Zombie until init reaps
D. ZOMBIE FOREVER!!!

E

. We’re lost...

26

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

é)

. // Server set up
while (1) {
sock fd = accept()
pid = fork();
if (pid == 0) {
// ??? process

} else {
// ??? process

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

é)

// Server set up
while (1) {
sock fd = accept()
pid = fork();
1if (pid == 0) {
// Child process

} else {
// Parent process

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

é)

// Server set up
while (1) {
sock fd = accept():;

pid = fork();

if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {

// ??? process

} else {
// Parent process

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

é)

// Server set up
while (1) {
sock fd = accept()
pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {
// Grand-child process
HandleClient (sock fd, ...);

}

} else {
// Parent process

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON L27: Concurrency and Processes

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept()

pid = fork();

if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient (sock fd, ...);
}
// Clean up resources...
exit();
} else {
// Parent process

YW UNIVERSITY of WASHINGTON

L27: Concurrency and Processes

Concurrent with Processes Pseudocode

+ See searchserver processes/

CSE333, Spring 2023

[// Server set up

while (1) {
sock fd = accept()
pid fork () ;
if (pid) |
// Child process
pid fork () ;
if (pid) |
// Grand-child process
HandleClient (sock fd,
}
// Clean up resources...
exit();
else {
// Parent process
// Wait for child to immediately die
wait () ;
close (sock fd);

<)

32

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Outline (Revisited)

« We’ll look at different searchserver implementations

= Sequential
" Concurrent via forking threads —pthread create ()

" Concurrent via forking processes — fork ()

« Conclusions:
® Concurrent execution leads to better CPU, network utilization

= Writing concurrent software can be tricky and different
concurrency methods have benefits and drawbacks

« In real servers, we’d like to avoid the overhead needed to
create a new thread or process for every request... how?

33

W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2023

Aside: Thread Pools

+ ldea:
= Create a fixed set of worker threads when the server starts
" When a request arrives, add it to a queue of tasks (using locks)
" Each thread tries to remove a task from the queue (using locks)

" When a thread is finished with one task, it tries to get a new task
from the queue (using locks)

+ A thread pool is written for you in Homework 4!

" Feel free to take a look, if curious

34

