
CSE333, Spring 2024L11: References, Const, Classes

C++ References, Const, Classes
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Leanna Nguyen Nam Nguyen Sayuj Shahi

Tanay Vakharia Wei Wu Yiqing Wang

Zohar Le

CSE333, Spring 2024L11: References, Const, Classes

pollev.com/uwcse333

❖ Draw a box-and-arrow diagram illustrating the state of

memory at line 5

2

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1;

x += 1;

z = &y;

*z += 1;

return EXIT_SUCCESS;

}

pointer.cc

x

y

z

Note: Arrow points
to next instruction.

CSE333, Spring 2024L11: References, Const, Classes

Administrivia

❖ Sections this week are HUGE!
▪ POSIX I/O

▪ C++ references and const (today!)

▪ Possibly even C++ classes if we have time 😱😱😱

❖ Homework 2 due next Wednesday (4/14)
▪ Note: libhw1.a (yours or ours) needs to be in correct directory

(hw1/) for hw2 to build

▪ Use Ctrl-D (eof) on a line by itself to exit searchshell; must free all
allocated memory

▪ Test on directory of small self-made files where you can predict the data
structures and then check them

▪ Valgrind takes a long time on the full test_tree. Try using enron docs
only or other small test data directory for quick checks.

❖ What is an accommodation?

❖ Final exam details
3

CSE333, Spring 2024L11: References, Const, Classes

Administrivia

❖ What is an accommodation? To over-simplify:

▪ Something that's costing you several hours a day

▪ You didn't expect/plan for it, or is outside your control

▪ Don't suffer in silence!

❖ Final exam details

▪ Take-home exam on Gradescope

▪ Due on Wednesday @ 4:20pm (the end of our normal exam time)

and written to take ~2h of your time (excluding review)

▪ Guaranteed to be released no later than Monday @ 4:20

▪ Unlimited time, unlimited collaboration

• … but not unlimited copying!

4

CSE333, Spring 2024L11: References, Const, Classes

Administrivia

❖ Final exam details … and tips!

▪ Unlimited time, unlimited collaboration

• … but not unlimited copying!

▪ Interviews with former students show that this works well:

• Open the exam as soon as it's released; note which topics are covered

• Do a targeted review of those topics

• Meet with a study group, solve the questions together

• 💥DESTROY YOUR NOTES 💥

• Re-solve the questions individually (should be fast, thanks to your

individual + then group review), then submit to Gradescope

• Enjoy your summer 😎

5

This is the part that's
supposed to take 2h

CSE333, Spring 2024L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

7

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1;

x += 1;

z = &y;

*z += 1;

return EXIT_SUCCESS;

}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

8

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1;

x += 1;

z = &y;

*z += 1;

return EXIT_SUCCESS;

}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

9

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1; // sets x to 6

x += 1;

z = &y;

*z += 1;

return EXIT_SUCCESS;

}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

10

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1; // sets x to 6

x += 1; // sets x (and *z) to 7

z = &y;

*z += 1;

return EXIT_SUCCESS;

}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

11

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1; // sets x to 6

x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y

*z += 1;

return EXIT_SUCCESS;

}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

12

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1; // sets x to 6

x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y

*z += 1; // sets y (and *z) to 11

return EXIT_SUCCESS;

}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

13

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x;

z += 1;

x += 1;

z = y;

z += 1;

return EXIT_SUCCESS;

}

reference.cc
14

CSE333, Spring 2024L11: References, Const, Classes

Comparing our Examples

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

15

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1;

x += 1;

z = &y;

*z += 1;

return EXIT_SUCCESS;

}

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x;

z += 1;

x += 1;

z = y;

z += 1;

return EXIT_SUCCESS;

}

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x;

z += 1;

x += 1;

z = y;

z += 1;

return EXIT_SUCCESS;

}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

16

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x; // binds the name "z" to x

z += 1;

x += 1;

z = y;

z += 1;

return EXIT_SUCCESS;

}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

17

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1;

z = y;

z += 1;

return EXIT_SUCCESS;

}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

18

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7

z = y;

z += 1;

return EXIT_SUCCESS;

}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

19

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y

z += 1;

return EXIT_SUCCESS;

}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

20

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y

z += 1; // sets z (and x) to 11

return EXIT_SUCCESS;

}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

21

CSE333, Spring 2024L11: References, Const, Classes

main

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

22

CSE333, Spring 2024L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

passbyreference.cc

(main) a

(swap) x
5

(main) b

(swap) y
10

Note: Arrow points
to next instruction.

(swap) tmp

23

CSE333, Spring 2024L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

passbyreference.cc

(main) a

(swap) x
5

(main) b

(swap) y
10

Note: Arrow points
to next instruction.

(swap) tmp 5

24

CSE333, Spring 2024L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

passbyreference.cc

(main) a

(swap) x
10

(main) b

(swap) y
10

Note: Arrow points
to next instruction.

(swap) tmp 5

25

CSE333, Spring 2024L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

passbyreference.cc

(main) a

(swap) x
10

(main) b

(swap) y
5

Note: Arrow points
to next instruction.

(swap) tmp 5

26

CSE333, Spring 2024L11: References, Const, Classes

main

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

27

CSE333, Spring 2024L11: References, Const, Classes

Pass-By-Reference: Mental Model

❖ A reference is an alias for another variable

▪ … so it's as if no additional space is allocated for it

▪ Unlike a pointer, which is a variable and does require space

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

return EXIT_SUCCESS;

}

passbyreference.cc 28

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

main
b

a

swap tmp

CSE333, Spring 2024L11: References, Const, Classes

pollev.com/uwcse333

❖ At this point, which addresses are identical? In other words:

which pairs of names are aliases?
▪ &a == &b

▪ &a == &x

▪ &y == &tmp

29

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

passbyreference.cc

CSE333, Spring 2024L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

31

CSE333, Spring 2024L11: References, Const, Classes

const

❖ const: this cannot be changed/mutated

▪ Used much more in C++ than in C

▪ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

void BrokenPrintSquare(const int& i) {

i = i*i; // compiler error here!

std::cout << i << std::endl;

}

int main(int argc, char** argv) {

int j = 2;

BrokenPrintSquare(j);

return EXIT_SUCCESS;

}

brokenpassbyrefconst.cc
32

CSE333, Spring 2024L11: References, Const, Classes

const and Pointers

❖ Since it's a variable, a pointer can modify a program's

state by:

1) Changing the value of the pointer (what it points to)

2) Changing the thing the pointer points to (via dereference)

33

CSE333, Spring 2024L11: References, Const, Classes

const and Pointers

❖ Since it's a variable, a pointer can modify a program's

state by:

1) Changing the value of the pointer (what it points to)

2) Changing the thing the pointer points to (via dereference)

❖ const can be used to prevent either/both of these

behaviors!

▪ const next to pointer name means you can’t change the value of

the pointer

▪ const next to data type pointed to means you can’t use this

pointer to change the thing being pointed to

▪ Tip: read variable declaration from right-to-left

34

CSE333, Spring 2024L11: References, Const, Classes

const and Pointers

❖ The syntax with pointers is confusing:

int main(int argc, char** argv) {

int x = 5; // int

const int y = 6; // (const int)

y++; // compiler error

const int *z = &y; // pointer to a (const int)

*z += 1; // compiler error

z++; // ok

int *const w = &x; // (const pointer) to a (variable int)

*w += 1; // ok

w++; // compiler error

const int *const v = &x; // (const pointer) to a (const int)

*v += 1; // compiler error

v++; // compiler error

return EXIT_SUCCESS;

}

constmadness.cc 35

CSE333, Spring 2024L11: References, Const, Classes

const Parameters

❖ A const parameter cannot

be mutated inside the

function

▪ Therefore it does not matter if

the argument can be mutated

or not

❖ A non-const parameter

could be mutated inside the

function

▪ It would be BAD if you could

pass it a const var

▪ Illegal regardless of whether

or not the function actually

tries to change the var
36

void foo(const int* y) {

std::cout << *y << std::endl;

}

void bar(int* y) {

std::cout << *y << std::endl;

}

int main(int argc, char** argv) {

const int a = 10;

int b = 20;

foo(&a); // OK

foo(&b); // OK

bar(&a); // not OK – error

bar(&b); // OK

return EXIT_SUCCESS;

}

CSE333, Spring 2024L11: References, Const, Classes

pollev.com/uwcse333

❖ What will happen when we try to compile and run?

A. Output “(2, 4, 0)"

B. Output “(2, 4, 3)"

C. Compiler error

about arguments

to foo (in main)

D. Compiler error

about body of foo

E. We’re lost…

37

#include <iostream>

void foo(int* const x, int& y, int z) {

*x += 1;

y *= 2;

z -= 3;

}

int main(int argc, char** argv) {

const int a = 1;

int b = 2, c = 3;

foo(&a, b, c);

std::cout << "(" << a << ", "

<< b << ", "

<< c << ")"

<< std::endl;

return 0;

}

CSE333, Spring 2024L11: References, Const, Classes

Google Style Guide Convention

❖ Use const references or call-by-value for input values

▪ Particularly for large values, use references (no copying)

❖ Use pointers for output parameters

❖ List input parameters first, then output parameters last

38

void CalcArea(const int& width, const int& height,

int* const area) {

*area = width * height;

}

int main(int argc, char** argv) {

int w = 10, h = 20, a;

CalcArea(w, h, &a);

return EXIT_SUCCESS;

}

styleguide.cc

ordinary int probably
better here, but

shows how const ref
works

ordinary int (not int&)
probably better here,
but shows how const

ref can be used

CSE333, Spring 2024L11: References, Const, Classes

When to Use References?

❖ A stylistic choice, not mandated by the C++ language

❖ Google C++ style guide suggests:

▪ Input parameters:

• Either use values (for primitive types like int or small

structs/objects)

• Or use const references (for complex struct/object instances)

▪ Output parameters:

• Use const pointers

– Unchangeable pointers referencing changeable data

39

CSE333, Spring 2024L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

42

CSE333, Spring 2024L11: References, Const, Classes

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

43

class Name {

public:

// public member declarations & definitions go here

private:

// private member delarations & definitions go here

}; // class Name

CSE333, Spring 2024L11: References, Const, Classes

Class Member Functions

❖ Class member functions can be:

1. defined within the class definition

• typically only used for trivial method definitions, like getters/setters

2. declared within the class definition and then defined elsewhere

44

retType Name::MethodName(type1 param1, …, typeN paramN) {

// body statements

}

class Name {

retType MethodName(type1 param1, …, typeN paramN) {

// body statements

}

}; // class Name

class Name {

retType MethodName(type1 param1, …, typeN paramN);

}; // class Name

CSE333, Spring 2024L11: References, Const, Classes

Class Organization (.h/.cc)

❖ It’s a little more complex than in C when modularizing

with struct definition:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

▪ Usually put member function definitions into companion .cc file

with implementation details

• Common exception: setter and getter methods

▪ These files can also include non-member functions that use the

class (more about this later)

❖ Unlike Java, you can name files anything you want

▪ But normally Name.cc and Name.h for class Name

45

CSE333, Spring 2024L11: References, Const, Classes

Class Definition (.h file)

46

#ifndef POINT_H_

#define POINT_H_

class Point {

public:

Point(const int x, const int y); // constructor

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double Distance(const Point& p) const; // member function

void SetLocation(const int x, const int y); // member function

private:

int x_; // data member

int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

CSE333, Spring 2024L11: References, Const, Classes

Class Member Definitions (.cc file)

47

#include <cmath>

#include "Point.h"

Point::Point(const int x, const int y) {

x_ = x;

this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {

// We can access p’s x_ and y_ variables either through the

// get_x(), get_y() accessor functions or the x_, y_ private

// member variables directly, since we’re in a member

// function of the same class.

double distance = (x_ - p.get_x()) * (x_ - p.get_x());

distance += (y_ - p.y_) * (y_ - p.y_);

return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

x_ = x;

y_ = y;

}

Point.cc

CSE333, Spring 2024L11: References, Const, Classes

Class Usage (a different .cc file)

48

#include <iostream>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

Point p1(1, 2); // allocate a new Point on the Stack

Point p2(4, 6); // allocate a new Point on the Stack

cout << "p1 is: (" << p1.get_x() << ", ";

cout << p1.get_y() << ")" << endl;

cout << "p2 is: (" << p2.get_x() << ", ";

cout << p2.get_y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;

return 0;

}

usepoint.cc

CSE333, Spring 2024L11: References, Const, Classes

Reading Assignment

❖ Before next time, you must read the sections in C++

Primer covering class constructors, copy constructors,

assignment (operator=), and destructors

▪ Ignore “move semantics” for now

▪ The table of contents and index are your friends…

▪ Should we start class with a “quiz” next time?

• Topic: if we write C x = y; or C x(y); or x=y; or C x; , which is called:

(i) constructor, (ii) copy constructor, (iii) assignment operator, …

▪ Seriously – the next lecture will make a lot more sense if you’ve

done some background reading ahead of time

• Don’t worry whether it all makes sense the first time you read it – it

won’t! The goal is to be aware of what the main issues are….

49

CSE333, Spring 2024L11: References, Const, Classes

Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates

50

CSE333, Spring 2024L11: References, Const, Classes

Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the

vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the

axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places

51

