YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

C++ Class Details, Heap
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu
Leanna Nguyen Nam Nguyen Sayuj Shahi
Tanay Vakharia Wei Wu Yiging Wang
Zohar Le

YA UNIVERSITY of WASHINGTON L13: C++ Heap

About Exercise Grading ...

+» The stakes feel too high ...

= . also, let's add an extra 24h

to Ex9's deadline

Gradescope "Score” __[Name |

3
2
1
0

CSE333, Spring 2024

Check Plus
Check
Check Minus

Minus

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Administrivia

+» Homework 2 due Wednesday night

" Check your work!! Allocate time to clone the repo when you’re
done,dogit checkout hw2-final; cd hwl and

copy/build 1ibhwl.a; cd hw2; make;then test everything
looks good

= Reminder: do not modify header files

= Reminder: commit/push your work regularly, not all at once at the
en

YW UNIVERSITY of WASHINGTON L13: C++ Heap

Lecture Outline

+ Class Details
= Rule of Three / Making Copies
= Access Controls and Friends
" Namespaces

"= Implicit Conversions

+» Using the Heap
" new/delete/delete]]

CSE333, Spring 2024

YW UNIVERSITY of WASHINGTON L13: C++ Heap

Rule of Three

+ If you define any of:
1) Destructor
2) Copy Constructor

3) Assignment (operator=)

+ Then you should normally define all three

CSE333, Spring 2024

= Can explicitly ask for default synthesized versions (C++11 & later):

(class Point {

public:
Point () = default;
~Point () = default;
Point (const Pointé& copyme) = default;

Pointé& operator=(const Pointé& rhs) =

//
//
//
default; //

the default
the default
the default
the default

ctor
dtor
cctor

m_um

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Dealing with the instanity

+» C++ style guide tip:
= |f possible, disable the copy constructor and assignment operator if not
needed — avoids implicit invocation and excessive copying. C++11 and

later have direct syntax to indicate this: Point 2011.h
(class Point { N
public:
Point (const int x, const int y) : x (x), y (y) { } // ctor
Point (const Point& copyme) = delete; // declare cctor and "=" to
Pointé& operator=(const Pointé& rhs) = delete; // be deleted (C++11)
private:
}; // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
\ J

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

If you’re dealing with old code ...

+ In pre-C++11 code the copy constructor and assignment
were often disabled by making them private and not

implementing them (you may see this)... boint h
(class Point { N
public:
Point (const int x, const int y) : x (x), v (y) { } // ctor
private:
Point (const Pointé& copyme) ; // disable cctor (no def.)
Point& operator=(const Pointé& rhs); // disable "=" (no def.)

}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = X; // compiler error (no assignment operator)

.

YW UNIVERSITY of WASHINGTON L13: C++ Heap

CSE333, Spring 2024

If you're dealing with old code ...
+» C++11 style guide tip:

= |f you disable them, then you instead may want an explicit “CopyFrom”
function that can be used when occasionally needed

= Google advice has changed over time — these days prefer copy ctr, op=

Point.h
rclass Point { l
public:
Point (const int x, const int y) : x (x), y (y) { } // ctor
void CopyFrom(const Point& copy from me) ;
Point (Polinté& copyme) = delete; // disable cctor
Point& operator=(Point& rhs) = delete; // disable "="
private:

}; // class Point

\

J

sanepoint.cc

Point x(1, 2): // OK
Point vy (3, 4); // OK
x.CopyFrom(y); // OK

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Lecture Outline

+ Class Details
= Rule of Three / Making Copies
= Access Controls and Friends
" Namespaces

"= Implicit Conversions
+ Using the Heap
" new/delete/delete]]

10

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

structvs. class

%+ InC,a struct can only contain data fields
= Has no methods and all fields are always accessible
" Instruct foo,the fooisa “struct tag”, not an ordinary data type

% In C++, struct and class are (nearly) the same!
= Both define a new type (the struct or class name)
= Both can have methods and member visibility (public/private/protected)

® Only real (minor) difference: members are default publicina struct
and default private ina class

+» Common style/usage convention:

= Use struct for simple bundles of data
- Convenience constructors can make sense though
= Use class for abstractions with data + functions

11

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Access Control

+ Access modifiers for members:
" public:accessible to all parts of the program

" private:accessible tothe member functions of the class

- Private to class, not object instances

" protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

" |f no access modifier is specified, st ruct members default to
public and class members defaultto private

12

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Nonmember Functions

+» “Nonmember functions” are just normal functions that
happen to use some class

" Called like a regular function instead of as a member of a class
object instance

" These do not have access to the class’ private members

+ Useful nonmember functions often included as part of the
interface to a class

= Declaration goes in header file, but outside of class definition

- But inside the same namespace as the class, if it has one

13

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Nonmember Functions

+» “Nonmember functions” are just normal functions that
happen to use some class

" Called like a regular function instead of as a member of a class
object instance

" These do not have access to the class’ private members

= Often included as part of the interface to a class

[class Complex { e e)3

vold ReadFromStream(std::istream& in, Complexé& a);

\.

\.

(§oid ReadFromStream (std: :istream& in, Complexé& a) {
double r;

in >> r

a.set real(r);

// .. etc ..
C Y

14

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Nonmember Operators

+» Operators can be member methods or non-member
functions

= Eg, overloaded operators (operator+, etc.), stream I/O
(operator<x), etc. ...

15

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Review: Operator Overloading

+ Can overload operators using member functions

= Restriction: left-hand side argument must be a class you are
implementing

Complex& operator+=(const Complex &a) { ... }

+ Can overload operators using nonmember functions

= No restriction on arguments (can specify any two)

« Our only option when the left-hand side is a class you do not have
control over, like ostreamor istream.

= But no access to private data members

Complex operator+ (const Complex &a, const Complex &b) { ... }

16

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

friend Nonmember Functions

+ A class can give a nonmember function (or class) access to
its nonpublic members by declaringitasa friend
within its definition
= friend function is not a class member, but has access privileges

as if it were

= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions
Complex.h

(class Complex { N

friend std::istream& operator>>(std::istream& in, Complexé& a);

L }; // class Complex)

[std::istreams operator>>(std::istream& in, Complex& a) {

} J
Complex.cc 47

\.

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

When to use Nonmember and £friend

+» Member functions:
= QOperators that modify the object being called on
- Assignment operator (operator=)

= “Core” non-operator functionality that is part of the class interface

+ Nonmember functions:

= Used for commutative operators

- e.g.,sovl + v2 isinvoked as operator+ (vl, wv2)instead of
vl.operator+ (v2)

= |If operating on two types and the class is on the right-hand side
- e.g.,cin >> complex;
= Returning a “new” object, not modifying an existing one

® Only grant friend permission if you NEED to

18

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333

« For exercise 9, which of these should be:

[et || i

operator=
operator+=, operator-= /

operator-, operator+

Operator* (dot-
product)

L
Operator* (scalar) ?
v

Operator<<

19

W UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333

+» Which constructors get called?

int main () {
Point pl; // line
Point p2[20]; // line
Point p3 = pl; // line

Point* pd4d = &(arr[3]); // line
Point p5 = Point (1, 2); // line

G W N =

return 0;

20

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Administrivia

«+ Homework 2 due TONIGHT

" File system crawler, indexer, and search engine

" Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation, execution, and tests!

- If your code won’t build or run when we clone it, well ... you should
have caught that ...

21

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Lecture Outline

+ Class Details
= Rule of Three / Making Copies
= Access Controls and Friends
" Namespaces

"= Implicit Conversions
+ Using the Heap
" new/delete/delete]]

22

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Namespaces

+» Each namespace is a separate scope

= Useful for avoiding symbol collisions

+~ Namespace definition:

()
" | namespace name {

// declarations go here

}

_ J
" Creates a new namespace name if it did not exist, otherwise adds

to the existing namespace (!)

- This means that components (classes, functions, etc.) of a namespace
can be defined in multiple source files

— All of the standard library is in namespace std but it has many source files

23

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
namespaces:

= There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e. nsp name: :member)

- Unless you are using that namespace or individual member item

« You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

24

YW UNIVERSITY of WASHINGTON L13: C++ Heap

Lecture Outline

+ Class Details
= Rule of Three / Making Copies
= Access Controls and Friends
" Namespaces
= Implicit Conversions
+ Using the Heap
" new/delete/delete]]

CSE333, Spring 2024

25

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Flashback

+ Recall this activity from C++ output streams:

INIVERSTY SR WASHINGTO
@ Poll Everywhere pollev.com/uwcse333

« How many different versions of operator<< are called?
= For now, ignore manipulators like hex and end1

= Also, what is output?

msg.cc
A.
B. 2
td;
C. 3 int main(int argc, char** argv) {
int n = 172;
D. 4 string str("m");
’ str += "y";
E. We're lost... cout << str << he W (2)
<< 150 << n < endl;
et EXIT_ SUCCPES
}
\ J
26

« String literals like "n ! " have type const char *

+ Canweconverta const char *toastd::string?
" Yes, but ...

27

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Implicit Type Conversions

+ C++ can use single-argument constructors to convert
between user-defined types

" Eg, converting const char *intoastd::string before
invoking operator<< (const std::stringé& s) onit

28

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Implicit Type Conversion: Example

félass MyString { h
public:
MyString (const char* s /* must be non-NULL */) { Copy(s) }
~MyString () { delete s ; }
void Copy(const char* copyme) { /* allocate s and copy */ }
const char* get string() { return s ; }
private:
const char* s ;
};
int main () {
MyString sl ("Hello CSE 333!"™); // invoke l-arg ctor
return 0O;
}
\§ J

29

YW UNIVERSITY of WASHINGTON L13: C++ Heap

Implicit Type Conversion: Example

CSE333, Spring 2024

(Void Print (const MyString& m) { A
cout << m.get string() << endl;
}
int main () {
MyString sl ("Hello CSE 333!");
// implicitly invoke l-arg ctor
Print ("Gosh, an implicit type conversion!");
Print (NULL),; // 2?2?
return O;
}
v,

30

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Implicit Type Conversions

+ C++ can use single-argument constructors to convert
between user-defined types

+» Sometimes it's not clear when a constructor is being
called

+» Sometimes you don't want the constructor to be called
(eg, on unexpected input)

+ To disable implicit type conversions via the single-
argument constructor, declareitexplicit

31

Implicit Type Conversion: Example

(Class MyString {

public:

explicit\MyString (const char* s /* must be non-NULL */) {
s — -

}
// .. rest of class remains the same ..

};

int main() {

MyString sl ("Hello CSE 333!"M);

PrintMyString ("An implicit type conversion?"); // nope
PrintMyStrin // also nope
PrintMyString (MyString ("Explicit invocation!")); // yup

return 0;

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

32

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Lecture Outline

+ Class Details
= Rule of Three / Making Copies
= Access Controls and Friends
" Namespaces

"= Implicit Conversions
+» Using the Heap
" new/delete /delete]]

33

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

C++1ll nullptr

+» Cand C++ have long used NULL as a pointer value that
references nothing

% C++11 introduced a new literal for this: nullptr
= New reserved word

" |nterchangeable with NULL for all practical purposes, but it has
type T* for any/every T, and is not an integer value

- Avoids funny edge cases, especially with function overloading
(£ (int) vs £ (T*); see C++ references for details)

- Still can convert to/from integer 0 for tests, assighment, etc.

= Advice: prefer nullptrin C++11 code

- Though NULL will also be around for a long, long time

34

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

new/delete

+ To allocate on the heap using C++, you use the new
keyword instead of malloc () from stdlib.h
" You can use new to allocate an object (e.g. new Point)
- Will execute appropriate constructor as part of object allocate/create

® You can use new to allocate a primitive type (e.g. new int)

+» To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free () from stdlib.h
" Don’t mix and match!
- Never free () something allocated with new

- Never delete something allocated withmalloc ()

- Careful if you’re using a legacy C code library or module in C++

35

CSE333, Spring 2024

YW UNIVERSITY of WASHINGTON L13: C++ Heap

new/delete Example

(int* AllocateInt(int x) { B (Point* AllocatePoint (int x, 1int vy) {\
int* heapy int ?fﬁéﬁ_3§§z> Point* heapy pt = new Point(x,y);
*heapy int = x; return heapy pt:;
return heapy int; }

W J y,

heappoint.cc

r#include "Point.h" R

using namespace std;

// definitions of AllocateInt() and AllocatePoint ()

int main —
oint* x = AllocatePoint (1, 2);

<@_ ATfocatelnt (3); > CB
cout << "x's x coord: " << x->get x() << endl;
cout << "y: " KK y K ", Fy: " KL *y <K< endl;

delete xe=—
delete ykf?—d

return 0;

YW UNIVERSITY of WASHINGTON L13: C++ Heap

CSE333, Spring 2024

new/delete Behavior

« new behavior:

" When allocating you can specify a constructor or initial value
« e.g.,new Point(l, 2),new 1nt (333)

" |If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

" You don’t need to check that new returns nul lptr

- When an error is encountered, an exception is thrown (that we won’t
worry about)

« delete behavior:

" |Ifyou delete already deleted memory, then you will get
undefined behavior (same as when you double £ree in C)

37

YW UNIVERSITY of WASHINGTON L13: C++ Heap

Dynamically Allocated Arrays

+» To dynamically allocate an array:

" Default initialize: | type* name = new typel[size];

+» To dynamically deallocate an array:

" Use|delete[] name;

" |tisanincorrectto use “delete name;” onan array

- The compiler probably won’t catch this, though (!) because it can’t

always tell if name* was allocated with new type[size];
or new type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior

CSE333, Spring 2024

38

YW UNIVERSITY of WASHINGTON L13: C++ Heap

Arrays Example (primitive)

CSE333, Spring 2024

arrays.cc
r#include "Point.h")
using namespace std;
int main () {
int stack int;
int* heap int = new int;
int* heap init int = new int(12);
int stack arr[10];
int* heap arr = new int[10];
int* heap init arr = new int[lO]();J(// uncommon usage
int* heap init error = new int[10](12); // bad syntax
int* heap init error = new int[10]{12}; // C++11 allows
(uncommon)
delete heap int; // ok
delete heap init int; // ok
delete heap arr; // error - e delete[]
delete[] heap init arr; // Ok
return 0O;
\]f J

39

YW UNIVERSITY of WASHINGTON

L13: C++ Heap

Arrays Example (class objects)

CSE333, Spring 2024

arrays.cc

[#include "Point.h"
using namespace std;

int main() {

Point stack point (1,
Point* heap point =

2);

new Point (1, 2);

delete heap point;

return 0;

!

Point* err pt arr = new Point[10];// bug-no Point ()
Point* err2 pt arr = new Point[10] (1,2);
Point* err2 pt arr = new Point[10]{1,2};

ctr

// bad syntax
// C++11 allows
// (uncommon)

\

40

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

malloc vs. new

malloc () new
What is it? a function an operator or keyword
How often used (in C)? often never
How often used (in C++)? rarely often
. arrays, structs, objects,
Allocated memory for anything Y L .
primitives
. . .
RetUrns avoid approprla}te pointer type
(should be cast) (doesn’t need a cast)
When out of memory returns NULL throws an exception

Deallocating free () deleteordelete[]

41

W UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333

+» What will happen when we invoke bar () ?

" |f thereis an error,

how would you fix it? [Foo::Foo(int val) { Init(val);)
Foo::~Foo () { delete foo ptr ; }

volid Foo::Init(int wval) {
foo ptr = new int;
*foo ptr = val;

}

Foo& Foo::operator=(const Foo& rhs) {

Bad delete delete foo ptr ; W" . 2[/]5

Init (* (rhs.foo ptr)
. Memory |eak return *this;
void bar () {

0O @ >

O

}
“Works” fine
Foo a(10)

We’re lost... Foo b(20)

a = 4ay

m

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Heap Member Example

- Let’s build a class to simulate some of the functionality of
the C++ string

" |Internal representation: c-string to hold characters

+» What might we want to implement in the class?

43

Str Class Walkthrough

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Str.h

(Y .
#include <iostream>
using namespace std;

class Str {

public:

Str () // default ctor

explicit Str(const char* s); // c-string ctor
Str (const Str& s); // copy ctor

~Str(); // dtor

int length() const; // return length of string
char* c_str() const; // return a copy of st on heap
void append (const Stré& s);

Str& operator=(const Stré& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Stré& s);

private:
char* st ; // c-string on heap (terminated by '\0')
// class Str

44

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Str Example Walkthrough

See:
Str.h

Str.cc

strtest.cc

» Look carefully at assignment operator=

= self-assignment test is especially important here

46

YA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Spring 2024

Extra Exercise #1

+ Write a C++ function that:

= Uses new to dynamically allocate an array of strings and uses
delete[] to freeit

= Uses new to dynamically allocate an array of pointers to strings
- Assign each entry of the array to a string allocated using new

= Cleans up before exiting
- Use delete to delete each allocated string
- Usesdelete[] to delete the string pointer array

« (whew!)

47

