
CSE333, Spring 2024L13: C++ Heap

C++ Class Details, Heap
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Leanna Nguyen Nam Nguyen Sayuj Shahi

Tanay Vakharia Wei Wu Yiqing Wang

Zohar Le

CSE333, Spring 2024L13: C++ Heap

About Exercise Grading …

2

❖ The stakes feel too high …

▪ … also, let's add an extra 24h

to Ex9's deadline

Gradescope "Score" Name

3 Check Plus

2 Check

1 Check Minus

0 Minus

CSE333, Spring 2024L13: C++ Heap

Administrivia

❖ Homework 2 due Wednesday night

▪ Check your work!! Allocate time to clone the repo when you’re

done, do git checkout hw2-final; cd hw1 and

copy/build libhw1.a; cd hw2; make; then test everything

looks good

▪ Reminder: do not modify header files

▪ Reminder: commit/push your work regularly, not all at once at the

en

3

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

▪ Implicit Conversions

❖ Using the Heap

▪ new / delete / delete[]

5

CSE333, Spring 2024L13: C++ Heap

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

▪ Can explicitly ask for default synthesized versions (C++11 & later):

6

class Point {

public:

Point() = default; // the default ctor

~Point() = default; // the default dtor

Point(const Point& copyme) = default; // the default cctor

Point& operator=(const Point& rhs) = default; // the default "="

...

CSE333, Spring 2024L13: C++ Heap

Dealing with the instanity

❖ C++ style guide tip:
▪ If possible, disable the copy constructor and assignment operator if not

needed – avoids implicit invocation and excessive copying. C++11 and
later have direct syntax to indicate this:

7

class Point {

public:

Point(const int x, const int y) : x_(x), y_(y) { } // ctor

...

Point(const Point& copyme) = delete; // declare cctor and "=" to

Point& operator=(const Point& rhs) = delete; // be deleted (C++11)

private:

...

}; // class Point

Point w; // compiler error (no default constructor)

Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Spring 2024L13: C++ Heap

If you’re dealing with old code …

❖ In pre-C++11 code the copy constructor and assignment

were often disabled by making them private and not

implementing them (you may see this)…

8

class Point {

public:

Point(const int x, const int y) : x_(x), y_(y) { } // ctor

...

private:

Point(const Point& copyme); // disable cctor (no def.)

Point& operator=(const Point& rhs); // disable "=" (no def.)

...

}; // class Point

Point w; // compiler error (no default constructor)

Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

Point.h

CSE333, Spring 2024L13: C++ Heap

If you're dealing with old code ...
❖ C++11 style guide tip:

▪ If you disable them, then you instead may want an explicit “CopyFrom”
function that can be used when occasionally needed

▪ Google advice has changed over time – these days prefer copy ctr, op=

9

class Point {

public:

Point(const int x, const int y) : x_(x), y_(y) { } // ctor

void CopyFrom(const Point& copy_from_me);

...

Point(Point& copyme) = delete; // disable cctor

Point& operator=(Point& rhs) = delete; // disable "="

private:

...

}; // class Point

Point.h

Point x(1, 2); // OK

Point y(3, 4); // OK

x.CopyFrom(y); // OK

sanepoint.cc

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

▪ Implicit Conversions

❖ Using the Heap

▪ new / delete / delete[]

10

CSE333, Spring 2024L13: C++ Heap

struct vs. class

❖ In C, a struct can only contain data fields
▪ Has no methods and all fields are always accessible

▪ In struct foo, the foo is a “struct tag”, not an ordinary data type

❖ In C++, struct and class are (nearly) the same!
▪ Both define a new type (the struct or class name)

▪ Both can have methods and member visibility (public/private/protected)

▪ Only real (minor) difference: members are default public in a struct
and default private in a class

❖ Common style/usage convention:
▪ Use struct for simple bundles of data

• Convenience constructors can make sense though

▪ Use class for abstractions with data + functions

11

CSE333, Spring 2024L13: C++ Heap

Access Control

❖ Access modifiers for members:

▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

▪ protected: accessible to member functions of the class and

any derived classes (subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another

access modifier is reached

▪ If no access modifier is specified, struct members default to

public and class members default to private

12

CSE333, Spring 2024L13: C++ Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that

happen to use some class

▪ Called like a regular function instead of as a member of a class

object instance

▪ These do not have access to the class’ private members

❖ Useful nonmember functions often included as part of the

interface to a class

▪ Declaration goes in header file, but outside of class definition

• But inside the same namespace as the class, if it has one

13

CSE333, Spring 2024L13: C++ Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that

happen to use some class

▪ Called like a regular function instead of as a member of a class

object instance

▪ These do not have access to the class’ private members

▪ Often included as part of the interface to a class

14

class Complex { ... };

void ReadFromStream(std::istream& in, Complex& a);

void ReadFromStream(std::istream& in, Complex& a) {

double r;

in >> r

a.set_real(r);

// … etc …

}

CSE333, Spring 2024L13: C++ Heap

Nonmember Operators

❖ Operators can be member methods or non-member

functions

▪ Eg, overloaded operators (operator+, etc.), stream I/O

(operator<<), etc. …

15

CSE333, Spring 2024L13: C++ Heap

Review: Operator Overloading

❖ Can overload operators using member functions

▪ Restriction: left-hand side argument must be a class you are

implementing

❖ Can overload operators using nonmember functions

▪ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class you do not have

control over, like ostream or istream.

▪ But no access to private data members

16

Complex operator+(const Complex &a, const Complex &b) { ... }

Complex& operator+=(const Complex &a) { ... }

CSE333, Spring 2024L13: C++ Heap

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to
its nonpublic members by declaring it as a friend
within its definition
▪ friend function is not a class member, but has access privileges

as if it were

▪ friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

17

class Complex {

...

friend std::istream& operator>>(std::istream& in, Complex& a);

...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {

...

}

Complex.h

Complex.cc

CSE333, Spring 2024L13: C++ Heap

When to use Nonmember and friend

❖ Member functions:

▪ Operators that modify the object being called on

• Assignment operator (operator=)

▪ “Core” non-operator functionality that is part of the class interface

❖ Nonmember functions:

▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of

v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to

18

CSE333, Spring 2024L13: C++ Heap

pollev.com/uwcse333

❖ For exercise 9, which of these should be:

19

Member Non-member Non-member Friend

operator=

operator+=, operator-=

operator-, operator+

Operator* (scalar)

Operator* (dot-
product)

Operator<<

CSE333, Spring 2024L13: C++ Heap

pollev.com/uwcse333

❖ Which constructors get called?

20

int main() {

Point p1; // line 1

Point p2[20]; // line 2

Point p3 = p1; // line 3

Point* p4 = &(arr[3]); // line 4

Point p5 = Point(1, 2); // line 5

return 0;

}

CSE333, Spring 2024L13: C++ Heap

Administrivia

❖ Homework 2 due TONIGHT

▪ File system crawler, indexer, and search engine

▪ Don’t forget to clone your repo to double-/triple-/quadruple-

check compilation, execution, and tests!

• If your code won’t build or run when we clone it, well … you should

have caught that …

21

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

▪ Implicit Conversions

❖ Using the Heap

▪ new / delete / delete[]

22

CSE333, Spring 2024L13: C++ Heap

Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions

❖ Namespace definition:

▪ namespace name {

// declarations go here

}

▪ Creates a new namespace name if it did not exist, otherwise adds

to the existing namespace (!)

• This means that components (classes, functions, etc.) of a namespace

can be defined in multiple source files

– All of the standard library is in namespace std but it has many source files

23

namespace name {

// declarations go here

}

CSE333, Spring 2024L13: C++ Heap

Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not

namespaces:

▪ There are no instances/objects of a namespace; a namespace is

just a group of logically-related things (classes, functions, etc.)

▪ To access a member of a namespace, you must use the fully

qualified name (i.e. nsp_name::member)

• Unless you are using that namespace or individual member item

• You only used the fully qualified name of a class member when you

are defining it outside of the scope of the class definition

24

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

▪ Implicit Conversions

❖ Using the Heap

▪ new / delete / delete[]

25

CSE333, Spring 2024L13: C++ Heap

Flashback

❖ Recall this activity from C++ output streams:

❖ String literals like "n!" have type const char *

❖ Can we convert a const char * to a std::string?

▪ Yes, but …

27

CSE333, Spring 2024L13: C++ Heap

Implicit Type Conversions

❖ C++ can use single-argument constructors to convert

between user-defined types

▪ Eg, converting const char * into a std::string before

invoking operator<<(const std::string& s) on it

28

CSE333, Spring 2024L13: C++ Heap

Implicit Type Conversion: Example

29

class MyString {

public:

MyString(const char* s /* must be non-NULL */) { Copy(s) }

~MyString() { delete s_; }

void Copy(const char* copyme) { /* allocate s_ and copy */ }

const char* get_string() { return s_; }

private:

const char* s_;

};

int main() {

MyString s1("Hello CSE 333!"); // invoke 1-arg ctor

return 0;

}

CSE333, Spring 2024L13: C++ Heap

Implicit Type Conversion: Example

30

void Print(const MyString& m) {

cout << m.get_string() << endl;

}

int main() {

MyString s1("Hello CSE 333!");

// implicitly invoke 1-arg ctor

Print("Gosh, an implicit type conversion!");

Print(NULL); // ???

return 0;

}

CSE333, Spring 2024L13: C++ Heap

Implicit Type Conversions

❖ C++ can use single-argument constructors to convert

between user-defined types

❖ Sometimes it's not clear when a constructor is being

called

❖ Sometimes you don't want the constructor to be called

(eg, on unexpected input)

❖ To disable implicit type conversions via the single-

argument constructor, declare it explicit

31

CSE333, Spring 2024L13: C++ Heap

Implicit Type Conversion: Example

32

class MyString {

public:

explicit MyString(const char* s /* must be non-NULL */) {

Copy(s)

}

// … rest of class remains the same …

};

int main() {

MyString s1("Hello CSE 333!");

PrintMyString("An implicit type conversion?"); // nope

PrintMyString(NULL); // also nope

PrintMyString(MyString("Explicit invocation!")); // yup

return 0;

}

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

▪ Implicit Conversions

❖ Using the Heap

▪ new / delete / delete[]

33

CSE333, Spring 2024L13: C++ Heap

C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that

references nothing

❖ C++11 introduced a new literal for this: nullptr

▪ New reserved word

▪ Interchangeable with NULL for all practical purposes, but it has

type T* for any/every T, and is not an integer value

• Avoids funny edge cases, especially with function overloading

(f(int) vs f(T*); see C++ references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

34

CSE333, Spring 2024L13: C++ Heap

new/delete

❖ To allocate on the heap using C++, you use the new

keyword instead of malloc() from stdlib.h

▪ You can use new to allocate an object (e.g. new Point)

• Will execute appropriate constructor as part of object allocate/create

▪ You can use new to allocate a primitive type (e.g. new int)

❖ To deallocate a heap-allocated object or primitive, use the

delete keyword instead of free() from stdlib.h

▪ Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

35

CSE333, Spring 2024L13: C++ Heap

new/delete Example

#include "Point.h"

using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {

Point* x = AllocatePoint(1, 2);

int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;

cout << "y: " << y << ", *y: " << *y << endl;

delete x;

delete y;

return 0;

}

int* AllocateInt(int x) {

int* heapy_int = new int;

*heapy_int = x;

return heapy_int;

}

Point* AllocatePoint(int x, int y) {

Point* heapy_pt = new Point(x,y);

return heapy_pt;

}

heappoint.cc

36

CSE333, Spring 2024L13: C++ Heap

new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for

objects and uninitialized (“mystery”) data for primitives

▪ You don’t need to check that new returns nullptr

• When an error is encountered, an exception is thrown (that we won’t

worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get

undefined behavior (same as when you double free in C)

37

CSE333, Spring 2024L13: C++ Heap

Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t

always tell if name* was allocated with new type[size];

or new type;

– Especially inside a function where a pointer parameter could point to a

single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;

38

CSE333, Spring 2024L13: C++ Heap

Arrays Example (primitive)

#include "Point.h"

using namespace std;

int main() {

int stack_int;

int* heap_int = new int;

int* heap_init_int = new int(12);

int stack_arr[10];

int* heap_arr = new int[10];

int* heap_init_arr = new int[10](); // uncommon usage

int* heap_init_error = new int[10](12); // bad syntax

int* heap_init_error = new int[10]{12}; // C++11 allows

... // (uncommon)

delete heap_int; //

delete heap_init_int; //

delete heap_arr; //

delete[] heap_init_arr; //

return 0;

}
39

arrays.cc

ok

ok

error – must be delete[]

ok

CSE333, Spring 2024L13: C++ Heap

Arrays Example (class objects)

#include "Point.h"

using namespace std;

int main() {

...

Point stack_point(1, 2);

Point* heap_point = new Point(1, 2);

Point* err_pt_arr = new Point[10];// bug-no Point() ctr

Point* err2_pt_arr = new Point[10](1,2); // bad syntax

Point* err2_pt_arr = new Point[10]{1,2}; // C++11 allows

... // (uncommon)

delete heap_point;

...

return 0;

}

40

arrays.cc

CSE333, Spring 2024L13: C++ Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

41

CSE333, Spring 2024L13: C++ Heap

pollev.com/uwcse333

❖ What will happen when we invoke bar()?

▪ If there is an error,

how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

42

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

foo_ptr_ = new int;

*foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

delete foo_ptr_;

Init(*(rhs.foo_ptr_));

return *this;

}

void bar() {

Foo a(10);

Foo b(20);

a = a;

}

CSE333, Spring 2024L13: C++ Heap

Heap Member Example

❖ Let’s build a class to simulate some of the functionality of

the C++ string

▪ Internal representation: c-string to hold characters

❖ What might we want to implement in the class?

43

CSE333, Spring 2024L13: C++ Heap

Str Class Walkthrough

44

#include <iostream>

using namespace std;

class Str {

public:

Str(); // default ctor

explicit Str(const char* s); // c-string ctor

Str(const Str& s); // copy ctor

~Str(); // dtor

int length() const; // return length of string

char* c_str() const; // return a copy of st_ on heap

void append(const Str& s);

Str& operator=(const Str& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:

char* st_; // c-string on heap (terminated by '\0')

}; // class Str

Str.h

CSE333, Spring 2024L13: C++ Heap

Str Example Walkthrough

See:

Str.h

Str.cc

strtest.cc

❖ Look carefully at assignment operator=

▪ self-assignment test is especially important here

46

CSE333, Spring 2024L13: C++ Heap

Extra Exercise #1

❖ Write a C++ function that:

▪ Uses new to dynamically allocate an array of strings and uses

delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

47

