
CSE333, Spring 2024L21:  IP Addresses, DNS

IP Addresses, DNS
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu 

Leanna Nguyen Nam Nguyen Sayuj Shahi

Tanay Vakharia Wei Wu Yiqing Wang 

Zohar Le



CSE333, Spring 2024L21:  IP Addresses, DNS

pollev.com/uwcse333

❖ What does the transport layer introduce to the layers 

below it (ie, physical, data, network)?

2



CSE333, Spring 2024L21:  IP Addresses, DNS

Administrivia

❖ HW3 due Wednesday night @ 10pm

▪ Please keep in mind that Ed and OH may disappear on Tuesday …

❖ New (but familiar) OH policy: if you aren't prepared, you will 

be bumped to the bottom of the OH queue

❖ We're done with C/C++!

▪ Next up: network programming, HTTP, concurrency

▪ Pace of exercises will slow down

❖ Exercise 15 due Tuesday

▪ Client-side TCP connection

4



CSE333, Spring 2024L21:  IP Addresses, DNS

Lecture Outline

❖ Network Programming

▪ Sockets API

▪ Network Addresses

▪ DNS Lookup

5



CSE333, Spring 2024L21:  IP Addresses, DNS

Files and File Descriptors

❖ Remember open(), read(), write(), and 

close()?

▪ POSIX system calls for interacting with files

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and 

close()

▪ Inside the OS, the file descriptor is used to index into a table that 

keeps track of any OS-level state associated with the file, such as 

the file position

6



CSE333, Spring 2024L21:  IP Addresses, DNS

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O

▪ You use read() and write() to communicate with remote 

computers over the network!

▪ A file descriptor used for network communications is called a 

socket

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the 

OS know which network channel to use

7



CSE333, Spring 2024L21:  IP Addresses, DNS

File Descriptor Table

OS’s File Descriptor Table for the Process

File 
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP 

socket
local:  128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP 

socket
local:  128.95.4.33:80

remote: 102.12.3.4:5544

Web Server

in
d

ex
.h

tm
l

p
ic

.p
n

g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

8



CSE333, Spring 2024L21:  IP Addresses, DNS

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

9



CSE333, Spring 2024L21:  IP Addresses, DNS

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

▪ Can also be used for other forms of communication like peer-to-

peer

1) Establish connection:

2) Communicate:

3) Close connection: client server

client server

10

client server



CSE333, Spring 2024L21:  IP Addresses, DNS

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used less frequently

▪ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

host

host host

host

host

host host

host

11



CSE333, Spring 2024L21:  IP Addresses, DNS

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

12



CSE333, Spring 2024L21:  IP Addresses, DNS

Socket API: Client TCP Connection

❖ We’ll start by looking at the API from the point of view of 

a client connecting to a server over TCP

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) .connect() the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

14



CSE333, Spring 2024L21:  IP Addresses, DNS

Step 1: Figure Out IP Address and Port

❖ Several parts:

▪ Network addresses

▪ Data structures for address info

▪ DNS - Doman Name System – finding IP addresses

15



CSE333, Spring 2024L21:  IP Addresses, DNS

IPv4 Network Addresses

❖ An IPv4 address is a 4-byte tuple

▪ For humans, written in “dotted-decimal notation”

▪ e.g. 128.95.4.1  (80:5f:04:01 in hex)

❖ IPv4 address exhaustion

▪ There are 232 ≈ 4.3 billion IPv4 addresses

▪ There are ≈ 8 billion people in the world (November 2022)

▪ Last unassigned IPv4 addresses allocated during 2011 to 2019 in 

various parts of the world

16



CSE333, Spring 2024L21:  IP Addresses, DNS

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets

• Double-colon replaces consecutive sections of zeros

▪ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33

• Shorthand:  2d01:db8:f188::1f33

▪ Transition is still ongoing

• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache 



17



CSE333, Spring 2024L21:  IP Addresses, DNS

Linux Socket Addresses

❖ Structures, constants, and helper functions available in 
#include <arpa/inet.h>

❖ Addresses stored in network byte order (big endian)

❖ Converting between host and network byte orders:
▪ uint32_t htonl(uint32_t hostlong);

▪ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order

• Also versions with ‘s’ for short (uint16_t instead)

❖ How to handle both IPv4 and IPv6?
▪ Use C structs for each, but make them somewhat similar

▪ Use defined constants to differentiate when to use each: AF_INET for 
IPv4 and AF_INET6 for IPv6

18



CSE333, Spring 2024L21:  IP Addresses, DNS

IPv4 Address Structures

19

// IPv4 4-byte address

struct in_addr {       

uint32_t s_addr;            // Address in network byte order

};

// An IPv4-specific address structure

struct sockaddr_in {   

sa_family_t sin_family;   // Address family: AF_INET

in_port_t sin_port;     // Port in network byte order

struct in_addr sin_addr;     // IPv4 address

unsigned char  sin_zero[8];  // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:

160 2 4 8



CSE333, Spring 2024L21:  IP Addresses, DNS

pollev.com/uwcse333

❖ Assume we have a struct sockaddr_in that 

represents a socket connected to 198.35.26.96 

(c6:23:1a:60) on port 80 (0x50) stored on a little-endian 

machine.

▪ AF_INET = 2

▪ Fill in the bytes in memory below (in hex):

20

0

8



CSE333, Spring 2024L21:  IP Addresses, DNS

IPv6 Address Structures

22

// IPv6 16-byte address

struct in6_addr {

uint8_t s6_addr[16];        // Address in network byte order

};

// An IPv6-specific address structure

struct sockaddr_in6 {

sa_family_t sin6_family;    // Address family: AF_INET6

in_port_t sin6_port;      // Port number

uint32_t sin6_flowinfo;  // IPv6 flow information

struct in6_addr sin6_addr;      // IPv6 address

uint32_t sin6_scope_id;  // Scope ID

};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28



CSE333, Spring 2024L21:  IP Addresses, DNS

Generic Address Structures

▪ Commonly create struct sockaddr_storage, then pass 

pointer cast as struct sockaddr* to connect()

23

// A mostly-protocol-independent address structure.

// Pointer to this is parameter type for socket system calls.

struct sockaddr {

sa_family_t sa_family;    // Address family (AF_* constants)

char sa_data[14];  // Socket address (size varies

// according to socket domain)

};

// A structure big enough to hold either IPv4 or IPv6 structs

struct sockaddr_storage {

sa_family_t ss_family;    // Address family

// padding and alignment; don’t worry about the details

char __ss_pad1[_SS_PAD1SIZE];

int64_t __ss_align;

char __ss_pad2[_SS_PAD2SIZE];

};



CSE333, Spring 2024L21:  IP Addresses, DNS

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts human-readable string representation (“presentation”) 

to network byte ordered address

▪ Returns 1 (success), 0 (bad src), or -1 (error)

24

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in sa;    // IPv4

struct sockaddr_in6 sa6;  // IPv6

// IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).

inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr_in6.

inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

return EXIT_SUCCESS;

}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);



CSE333, Spring 2024L21:  IP Addresses, DNS

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts network addr in src into buffer dst of size size

25

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in6 sa6;         // IPv6

char astring[INET6_ADDRSTRLEN];  // IPv6

// IPv6 string to sockaddr_in6.

inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

// sockaddr_in6 to IPv6 string.

inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);

std::cout << astring << std::endl;

return EXIT_SUCCESS;

}

genstring.cc

const char* inet_ntop(int af, const void* src, 

char* dst, socklen_t size);



CSE333, Spring 2024L21:  IP Addresses, DNS

Domain Name System

❖ People tend to use DNS names, not IP addresses

▪ The Sockets API lets you convert between the two

▪ It’s a complicated process, though:

• A given DNS name can have many IP addresses

• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

❖ You can use the Linux program “dig” to explore DNS

▪ dig @server name type (+short)

• server:  specific name server to query

• type:  A (IPv4), AAAA (IPv6), ANY (includes all types)

26



CSE333, Spring 2024L21:  IP Addresses, DNS

DNS Hierarchy

27

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root 
Name Servers

Top-level 
Domain Servers

• • • news www• • •



CSE333, Spring 2024L21:  IP Addresses, DNS

Resolving DNS Names

❖ The POSIX way is to use getaddrinfo()

▪ A complicated system call found in #include <netdb.h>

▪ Basic idea:

• Tell getaddrinfo() which host and port you want resolved

– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected

• getaddrinfo() gives you a list of results packed into an 

“addrinfo” structure/linked list

– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo list later using freeaddrinfo()

28

int getaddrinfo(const char* hostname, 

const char* service, 

const struct addrinfo* hints, 

struct addrinfo** res);



CSE333, Spring 2024L21:  IP Addresses, DNS

getaddrinfo

❖ getaddrinfo() arguments:

▪ hostname – domain name or IP address string

▪ service – port # (e.g. "80") or service name (e.g. "www") 

or NULL/nullptr

▪

▪ See dnsresolve.cc

29

struct addrinfo {

int ai_flags;          // additional flags

int ai_family;         // AF_INET, AF_INET6, AF_UNSPEC

int ai_socktype;       // SOCK_STREAM, SOCK_DGRAM, 0

int ai_protocol;       // IPPROTO_TCP, IPPROTO_UDP, 0

size_t ai_addrlen;        // length of socket addr in bytes

struct sockaddr* ai_addr;  // pointer to socket addr

char*   ai_canonname;      // canonical name

struct addrinfo* ai_next;  // can form a linked list

};


