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Perl

is an imperative language

supports many programming styles
(including object-oriented)
is portable across platforms

“A language for getting your job done!”
—Larry Wall

Designer and primary implementor of Perl

April 2000 G. Badros -- CSE-341, Zen of Perl 1

Design philosophy

No a priori design, no committees!

A mix-and-match accumulation of useful
features desired by real programmers
over many years

Originally for text processing,
generating reports

Has features from C, Java, Unix shells,
awk, and sed
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What is it used for?

Text processing, generating reports

GUI front-ends to command-line
commands

Systems integration programming
Web CGI scripting
...and lots lots more!
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Perl is incredibly useful

Of about 480 of my general-purpose scripts

~ 220 are sh shell scripts
(many of these use Perl inside!)

~ 130 are zsh shell scripts
~ 110 are Perl scripts
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Perl language features

Dynamically typed
Lexical and dynamic scoping
First-class functions

Built-in arrays, lists, hash-tables,
“regular expressions”

Module system

Automatic memory reclamation
(via reference counting)
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Sample task

Print a report of the users of a given
computer system using /etc/passwd

Input: /etc/passwd file
Output: Human readable report

Think about how you would do this in
C++ or Java...
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Running Perl code

Can use shebang (sharp-bang) lines when
running under Unix varieties:
#!1/usr/bin/perl

means to use the binary “/usr/bin/perl” to
interpret the remaining lines of the file

Can also run Perl directly:
perl passwd-report
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Ultra-fast byte-compilation

Perl seems to be interpreted—

very fast turnaround time

Actually, it byte-compiles the source code
very quickly, saves the byte-codes in
memory, and then has a virtual machine
that runs those byte codes

Fast compilation + surprisingly fast
execution = easy and quick development
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Perl philosophies

There’s more than one way to do it
(TMTOWTDI)

The long term lazy way

Do it right, since you’ll end up using it
over and over again

3 great virtues of a programmer:
Laziness, impatience, and hubris
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Conditionals in Perl

if ($nLines < 0) {
$nLines = 0;
} Focus on the conditional?
or
Focus on the assignment?

or

$nLines = 0 if $nLines < 0;
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Larry Wall is a linguist

If you make a cup of tea,
I'll drink it.

or

I'll drink a cup of tea if you make it.
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Variables
$scalar number, string, reference
@array heterogeneous
%hash maps keys to values

&subroutine  usually omit the &
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Comparisons

< == > for comparing numbers
It eq gt for comparing strings
terpreted as
"a" < "b" b undef FALSE
"atlt"b" b 1
"11" < "2" b undef

"11" It 2" P 1 «——_Interpreted
as TRUE
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Strings and numbers
are one and the same

"11" < 2 b undef
"11"t2b 1

Instead of giving a type error,

Perl is defined to give a reasonable
meaning to virtually any expression!
Downside: sometimes the meaning may
surprise or confuse you!
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Variable interpolation
and string literals

Variables substituted

my $a = 2; foryalues inside double quotes

my $b = "World";
print STDOUT "Hello $b\n1+1=%a\n":
print STDOUT ’'Hello $b\n1+1=%$a\n’;

Output:
Hello World Single quotes result in a string
1+1=2 with the exact contents

Hello $b\nl+1=%$a\n
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Arrays and lists

my @names = split(/,/,"jill,bob,sam");
$ since vaiue NMY @colors = ("red","green"”,"blue");
Jocessed “$colors[0] b "red”

$colors[1] = "NewColor";
join("," @colors) b "red,GREEN,blue"”
<

@ since here we are talking
about the array as a whole unit

April 2000 G. Badros -- CSE-341, Zen of Perl 16

http://www.cs.washington.edu/education/courses/341/99su

Hash tables

%longday = (
"Sun" => "Sunday",
"Mon" => "Monday",

"Tue" => "Tuesday", Not a typo—

trailing comma
Is ignored and
"Sat" => "Saturday", makes editing
): A easier!
$longday{"Mon"} b "Monday"
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Ilteration

for my $d (values %longday) {
print $d, "\n"; Extra return

} here to have same
output as the above

But could just write:
print join("\n",(values %longday)), "\n";
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Iteration and lists

@longday vals = values %longday;
foreach my $d (@longday_vals) {
print $d, "\n";
} List of arguments to the

script from command line
A

while (my $arg = shift @ARGV) {
print "$arg\n";
}
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Reading from files

# Print all lines from standard input

# that coWing "greg"

while (<;) { Lots of magic here—
int if /- reads from standard input,
prin ', greg/; and assigns to $_
}

More magic —

as if we wrote:
print $_ if ($_ =~ m/greg/)
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Regular expressions

Very powerful “wildcard-like” tool
Simple cases, just matching substrings
"Hi Greg, how are you" =~ m/greg/ b undef
"Hi Greg, how are you" =~ m/Greg/ b 1
"Hi Greg, how are you" =~ m/gregﬁ b1
Regular-expression
control flag:

Ignore case!
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Regular expression
meta-characters

. Matches any character
(except’newline)
"Hi Greg, how are you" =~ m/G7 b 1
"Hi Greg, how are you" =~ m/G.e/ b 1

"Hi Greg_how are you” =~ m/G.”p( P 1

Greedily chose longest match ™ Means zero or more
instead of: Gre occurrences
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Literal meta-characters
in regular expressions

\ Prevents m}ata—meaning

\4
"Hi Greg, how are you" =~ m/G\./ b undef
"Hi Greg, how are you" =~ m/G.\*e/ b undef
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Regexp special characters

\ Quote the next metacharacter
~ Match the beginning of the line
$ Match the end of the line

Match any character except a newline
(//s modifier makes it also match a newline)

| Alternation
() Grouping
[ 1 Character class
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Regexp grouping

my $line = "ji||,bobms comma is the only

. » literal character in
=~ m N( * * -
$line = I7(), ()31 the regular expression
D

$1 $2

my ($first_part, $second_part) = ($1,$2);
$first_part b "jill,bobh" «—<Greedy” matching —

" " the longest substring
$second_part b "sam Was chosen
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Usefulness of regular
expressions

Wrote 11,000 line static analysis tool for
better understanding how C programmers
used the C pre-processor in real programs
Used regular expressions pervasively
For example, to look for #if, #ifdef, or
#endif preprocessor directives:
m/™M\s*#\s*(if(def)?|endif)\s.*$/
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Subroutines

sub comma_to_colon {
my ($str) = (@_);
$str =~ s/,/:/g;
return $str;

}

$line = comma_to_colon($line);
$line P "jill:bob:sam"
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References

sub comma_to_colon {
my ($ref_str) = (@_);
$$ref str =~ s/,/:/g;

} Extra $ to de-reference

(like *in C/@/\ creates a reference

) (like & in C/C++)
comma_to_colon(\$line);
$line b "jill:bob:sam”
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Learning more...

See my book recommendations online
www/homes/gjb/doc/book-recommendations.html

On-line links (see class web page)

Perldoc, info pages, etc., e.g.:
% perldoc CGI
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