G. Badros -- CSE-341, Zen of Perl

The Zen of Perl

Greg J. Badros
badr os @s. washi ngt on. edu
University of Washington, Seattle
CSE-341, Spring 2000

Copyright © 1999-2000 Greg J. Badros — All Rights Reserved

13-August-1999

Perl

is an imperative language

supports many programming styles
(including object-oriented)
is portable across platforms

“A language for getting your job done!”
—Larry Wall

Designer and primary implementor of Perl

April 2000 G. Badros -- CSE-341, Zen of Perl 1

Design philosophy

No a priori design, no committees!

A mix-and-match accumulation of useful
features desired by real programmers
over many years

Originally for text processing,
generating reports

Has features from C, Java, Unix shells,
awk, and sed

April 2000 G. Badros -- CSE-341, Zen of Perl

What is it used for?

Text processing, generating reports

GUI front-ends to command-line
commands

Systems integration programming
Web CGI scripting
...and lots lots more!

April 2000 G. Badros -- CSE-341, Zen of Perl 3

Perl is incredibly useful

Of about 480 of my general-purpose scripts

~ 220 are sh shell scripts
(many of these use Perl inside!)

~ 130 are zsh shell scripts
~ 110 are Perl scripts

April 2000 G. Badros -- CSE-341, Zen of Perl

http://www.cs.washington.edu/education/courses/341/99su

Perl language features

Dynamically typed
Lexical and dynamic scoping
First-class functions

Built-in arrays, lists, hash-tables,
“regular expressions”

Module system

Automatic memory reclamation
(via reference counting)

April 2000 G. Badros -- CSE-341, Zen of Perl 5

G. Badros -- CSE-341, Zen of Perl

Sample task

Print a report of the users of a given
computer system using /etc/passwd

Input: /etc/passwd file
Output: Human readable report

Think about how you would do this in
C++ or Java...

April 2000 G. Badros -- CSE-341, Zen of Perl

13-August-1999

Running Perl code

Can use shebang (sharp-bang) lines when
running under Unix varieties:
#!1/usr/bin/perl

means to use the binary “/usr/bin/perl” to
interpret the remaining lines of the file

Can also run Perl directly:
perl passwd-report

April 2000 G. Badros -- CSE-341, Zen of Perl

Ultra-fast byte-compilation

Perl seems to be interpreted—

very fast turnaround time

Actually, it byte-compiles the source code
very quickly, saves the byte-codes in
memory, and then has a virtual machine
that runs those byte codes

Fast compilation + surprisingly fast
execution = easy and quick development

April 2000 G. Badros -- CSE-341, Zen of Perl 8

Perl philosophies

There’s more than one way to do it
(TMTOWTDI)

The long term lazy way

Do it right, since you’ll end up using it
over and over again

3 great virtues of a programmer:
Laziness, impatience, and hubris

April 2000 G. Badros -- CSE-341, Zen of Perl 9

Conditionals in Perl

if ($nLines < 0) {
$nLines = 0;
} Focus on the conditional?
or
Focus on the assignment?

or

$nLines = 0 if $nLines < 0;

April 2000 G. Badros -- CSE-341, Zen of Perl 10

http://www.cs.washington.edu/education/courses/341/99su

Larry Wall is a linguist

If you make a cup of tea,
I'll drink it.

or

I'll drink a cup of tea if you make it.

April 2000 G. Badros -- CSE-341, Zen of Perl 11

G. Badros -- CSE-341, Zen of Perl

Variables
$scalar number, string, reference
@array heterogeneous
%hash maps keys to values

&subroutine usually omit the &

April 2000 G. Badros -- CSE-341, Zen of Perl 12

13-August-1999

Comparisons

< == > for comparing numbers
It eq gt for comparing strings
terpreted as
"a" < "b" b undef FALSE
"atlt"b" b 1
"11" < "2" b undef

"11" It 2" P 1 «——_Interpreted
as TRUE

April 2000 G. Badros -- CSE-341, Zen of Perl 13

Strings and numbers
are one and the same

"11" < 2 b undef
"11"t2b 1

Instead of giving a type error,

Perl is defined to give a reasonable
meaning to virtually any expression!
Downside: sometimes the meaning may
surprise or confuse you!

April 2000 G. Badros -- CSE-341, Zen of Perl 14

Variable interpolation
and string literals

Variables substituted

my $a = 2; foryalues inside double quotes

my $b = "World";
print STDOUT "Hello $b\n1+1=%a\n":
print STDOUT ’'Hello $b\n1+1=%$a\n’;

Output:
Hello World Single quotes result in a string
1+1=2 with the exact contents

Hello $b\nl+1=%$a\n

April 2000 G. Badros -- CSE-341, Zen of Perl 15

Arrays and lists

my @names = split(/,/,"jill,bob,sam");
$ since vaiue NMY @colors = ("red","green"”,"blue");
Jocessed “$colors[0] b "red”

$colors[1] = "NewColor";
join("," @colors) b "red,GREEN,blue"”
<

@ since here we are talking
about the array as a whole unit

April 2000 G. Badros -- CSE-341, Zen of Perl 16

http://www.cs.washington.edu/education/courses/341/99su

Hash tables

%longday = (
"Sun" => "Sunday",
"Mon" => "Monday",

"Tue" => "Tuesday", Not a typo—

trailing comma
Is ignored and
"Sat" => "Saturday", makes editing
): A easier!
$longday{"Mon"} b "Monday"

April 2000 G. Badros -- CSE-341, Zen of Perl 17

G. Badros -- CSE-341, Zen of Perl

Ilteration

for my $d (values %longday) {
print $d, "\n"; Extra return

} here to have same
output as the above

But could just write:
print join("\n",(values %longday)), "\n";

April 2000 G. Badros -- CSE-341, Zen of Perl 18

13-August-1999

Iteration and lists

@longday vals = values %longday;
foreach my $d (@longday_vals) {
print $d, "\n";
} List of arguments to the

script from command line
A

while (my $arg = shift @ARGV) {
print "$arg\n";
}

April 2000 G. Badros -- CSE-341, Zen of Perl 19

Reading from files

Print all lines from standard input

that coWing "greg"

while (<;) { Lots of magic here—
int if /- reads from standard input,
prin ', greg/; and assigns to $_
}

More magic —

as if we wrote:
print $_ if ($_ =~ m/greg/)

April 2000 G. Badros -- CSE-341, Zen of Perl 20

Regular expressions

Very powerful “wildcard-like” tool
Simple cases, just matching substrings
"Hi Greg, how are you" =~ m/greg/ b undef
"Hi Greg, how are you" =~ m/Greg/ b 1
"Hi Greg, how are you" =~ m/gregﬁ b1
Regular-expression
control flag:

Ignore case!

April 2000 G. Badros -- CSE-341, Zen of Perl 21

Regular expression
meta-characters

. Matches any character
(except’newline)
"Hi Greg, how are you" =~ m/G7 b 1
"Hi Greg, how are you" =~ m/G.e/ b 1

"Hi Greg_how are you” =~ m/G.”p(P 1

Greedily chose longest match ™ Means zero or more
instead of: Gre occurrences

April 2000 G. Badros -- CSE-341, Zen of Perl 22

http://www.cs.washington.edu/education/courses/341/99su

Literal meta-characters
in regular expressions

\ Prevents m}ata—meaning

\4
"Hi Greg, how are you" =~ m/G\./ b undef
"Hi Greg, how are you" =~ m/G.*e/ b undef

April 2000 G. Badros -- CSE-341, Zen of Perl 23

G. Badros -- CSE-341, Zen of Perl

13-August-1999

Regexp special characters

\ Quote the next metacharacter
~ Match the beginning of the line
$ Match the end of the line

Match any character except a newline
(//s modifier makes it also match a newline)

| Alternation
() Grouping
[1 Character class

April 2000 G. Badros -- CSE-341, Zen of Perl 24

Regexp grouping

my $line = "ji||,bobms comma is the only

. » literal character in
=~ m N(* * -
$line = I7(), ()31 the regular expression
D

$1 $2

my ($first_part, $second_part) = ($1,$2);
$first_part b "jill,bobh" «—<Greedy” matching —

" " the longest substring
$second_part b "sam Was chosen

April 2000 G. Badros -- CSE-341, Zen of Perl 25

Usefulness of regular
expressions

Wrote 11,000 line static analysis tool for
better understanding how C programmers
used the C pre-processor in real programs
Used regular expressions pervasively
For example, to look for #if, #ifdef, or
#endif preprocessor directives:
m/™M\s*#\s*(if(def)?|endif)\s.*$/

April 2000 G. Badros -- CSE-341, Zen of Perl 26

Subroutines

sub comma_to_colon {
my ($str) = (@_);
$str =~ s/,/:/g;
return $str;

}

$line = comma_to_colon($line);
$line P "jill:bob:sam"

April 2000 G. Badros -- CSE-341, Zen of Perl 27

References

sub comma_to_colon {
my ($ref_str) = (@_);
$$ref str =~ s/,/:/g;

} Extra $ to de-reference

(like *in C/@/\ creates a reference

) (like & in C/C++)
comma_to_colon(\$line);
$line b "jill:bob:sam”

April 2000 G. Badros -- CSE-341, Zen of Perl 28

Learning more...

See my book recommendations online
www/homes/gjb/doc/book-recommendations.html

On-line links (see class web page)

Perldoc, info pages, etc., e.g.:
% perldoc CGI

April 2000 G. Badros -- CSE-341, Zen of Perl 29

http://www.cs.washington.edu/education/courses/341/99su

