Object-Oriented Design

Steps in building an OO program:

« identify the major data abstractions in the application
(“find the objects”)

« identify the major operations on the data abstractions
(“find the interfaces”)

« identify commonalities among the data abstractions,
identify major implementations of the data abstractions,
and organize the abstractions into inheritance hierarchies

< implement the design
An iterative process

Design for the long term:
future applications build upon work done
for earlier applications

Craig Chambers 127 CSE 341

To inherit or not to inherit

Use inheritance when:
» one ADT is a special kind of another ADT
« “AisaB”
« interface of subclass is a superset of interface of superclass

» code of one ADT can be reused in large part for code in
another ADT

* helps organize & simplify the code

Don't use inheritance when:
» one ADT is more logically a component of the other
e “AhasaB”
« interfaces are different
* use aggregation instead, via instance variables
 only a few routines can be reused without change

If in doubt, don't inherit

Organizing for common interfaces rather than implementation
usually better in the long run

Issues with inheritance

Sometimes, interfaces are right, but implementation isn’t
O refactor superclass into abstract and concrete classes,
inherit from abstract class

Sometimes, could inherit from several things
O use multiple inheritance, if language allows it
(Smalltalk doesn't, C++ does, Java does for interfaces)

Craig Chambers 129 CSE 341

Craig Chambers 128 CSE 341

A case study: the Smalltalk collection classes

Goal: organize various collection ADTs
into useful inheritance hierarchy

¢ maximize internal code reuse

* maximize uniformity of interface to support more
polymorphism in client code

Kinds of collection ADTSs:
* Array
 String
 LinkedList
» OrderedCollection
« Dictionary
* Set
* Bag
» SortedCollection

How to organize them into a hierarchy?
How to define their interfaces in a common way?

Craig Chambers 130 CSE 341




