
OO subtyping

• A type SubA may only be a subtype of A
if every instance of SubA can be safely
substituted for any instance of A.
– SubA instances must handle all the same

messages as instances of A
– SubA methods must return results usable by

any client of A

More specifically:

• Given an object O pointed to by a reference
of type A...
– O's methods must return a type at least as

specific as the return type of A's corresponding
methods.

– O's methods must take parameters at least as
general as the parameters of A's corresponding
methods.

What should be subtypes?
class Fruit { ... }
class Apple extends Fruit { ... }
class Orange extends Fruit { ... }

class FruitPlant
{ Fruit produce() { ... } }

class ApplePlant
{ Apple produce() { ... } }

class FruitFly
{ void eat(Fruit f) { ... } }

class AppleFly
{ void eat(Apple a) { ... } }

Assignments and subtyping

• A reference may refer to any instance of a
class, or any instance of its subclasses.

• Hence, it is always legal to assign "up" the
heirarchy---a subclass instance may be
assigned to a superclass reference.
– Implies: may pass a subtype as a parameter

where its supertype is required
– Implies: may return a subtype when its

supertype is required

Which should be statically legal?
FruitPlant fp = new FruitPlant(); // 1
ApplePlant ap = new ApplePlant(); // 2

FruitPlant fp2 = ap; // 3
ApplePlant ap2 = fp; // 4
ApplePlant ap3 = fp2; // 5

FruitEatingFly ffly = new FruitEatingFly(); // 6
ffly.eat(fp.produce()); // 7
ffly.eat(ap.produce()); // 8

AppleEatingFly afly = new AppleEatingFly(); // 9
afly.eat(fp.produce()); // 10
afly.eat(ap.produce()); // 11

Java overriding and subtyping
rules: more restrictive

• “Natural overriding”: overriding methods
may have more specific return type, and
more general parameters

• Java: overriding methods must have exactly
the same return and parameter types

• Changing parameter types overloads
method instead of overriding

Translating flies...

class AppleEatingFly
{ void eat(Apple a) { ... }
}

class FruitEatingFly
extends AppleEatingFly

{ void eat(Apple a) { ... }
void eat(Fruit f) { ... }

}

What about return types?
// OK in Java
class FruitPlant

{ Fruit produce() { ... } }
class ApplePlant extends FruitPlant

{ Fruit produce() { ... } }

// Not OK---cannot overload on return type!
class FruitPlant

{ Fruit produce() { ... } }
class ApplePlant extends FruitPlant

{ Fruit produce() { ... }
Apple produce() { ... } }

Overriding vs. overloading

• Overriding: subclasses may define a different
method to be invoked for a runtime message
– (Dynamic dispatch on receiver type)

• Overloading allows classes to define different
methods of the same name.
– (Static overload resolution: messages are

completely different!)

Which should be legal? Which
methods are invoked?

FruitEatingFly ffly = new FruitEatingFly();
AppleEatingFly afly = ffly;
Apple appleRef = new Apple();
Fruit fruitRef = anApple;

ffly.eat(appleRef); // 1
ffly.eat(fruitRef); // 2
afly.eat(appleRef); // 3
afly.eat(fruitRef); // 4

What’s wrong?

abstract class AppleEater {
abstract void eat(Apple a);

}

class FruitEatingFly extends AppleEater {
void eat(Fruit f) { ... }

}

“Generic functions”

• Generic function = function that contains
several methods
– when a GF is called, dynamically select method

based on runtime type of receiver

• Java places methods into GFs by name and
exact matches on argument types

Generic functions, ct’d.

FruitEatingFly::
eat(Apple a)

AppleEatingFly::
eat(Apple a)

eat(Apple a)

FruitEatingFly::
eat(Fruit f)

--(does not exist)--eat(Fruit f)Generic
functions

FruitEatingFlyAppleEatingFly

Receiver classes/methods

Logic/constraint programming
abs(X,A) :- X >= 0, X = A. /* a CLP(R) "relation */
abs(X,A) :- X < 0, -X = A.

?- abs(1, X). /* CLP(R) query */
X = 1
*** Yes

?- abs(Y, 2). /* Another query; notice that it goes */
Y = 2 /* in the opposite "direction". */
Y = -2
*** Yes

