
CSE 341:
Programming Languages

Autumn 2006

Oct 13 — define-struct & misc

CSE 341 Autumn 2006, Oct 13 1



A Few Miscellaneous Scheme Topics

In DrScheme, you can use square brackets as well as parenthesis. (You

need to match left parentheses with right parentheses, left square

brackets with right square brackets.) Suggestion: use not at all, or

sparingly for readability.

’ is a macro — ’x and ’(a b c) are equivalent to (quote x) and

(quote (a b c)).

Scheme functions can take a variable number of arguments.

(define (squid a b . c)

(print a)

(print b)

(print c))

squid requires at least 2 arguments. Any remaining arguments

(perhaps 0) are put into a list, which is bound to c.

CSE 341 Autumn 2006, Oct 13 2



define-struct
MzScheme extends Scheme with define-struct, e.g.:

(define-struct square (x y))

(define-struct piece (squares))

Semantics:

• Binds constructors (make-square, make-piece) that take

arguments and make values.

• Binds predicates (square?, piece?) that take one argument and

return #t only for values built from the right constructor.

• Binds accessors (square-x, square-y, piece-squares) that

take one argument, return the appropriate field, and call error for

values not built from the right constructor.

• Binds mutators (set-square-x!, set-square-y!,

set-piece-squares!).

CSE 341 Autumn 2006, Oct 13 3



define-struct is special

Claim: define-struct is not a function.

Claim: define-struct is not a macro.

It could be a macro except for one key bit of its semantics: Values

built from the constructor cause every other predicate (including all

built-in ones) to return #f.

Advantage: abstraction

Disadvantage: Can’t write “generic” code that has a case for every

possible variant in every Scheme program.

CSE 341 Autumn 2006, Oct 13 4


