
CSE 341, Spring 2008, Assignment 6
Due: Wednesday 28 May, 8:00AM

Last updated: May 18

Overview: This assignment has two parts. Problems 1–4 involve defining Ruby classes for trees of strings.
Problem 5 involves extending an anagram-finder written in Ruby.

1. Define 2 classes Leaf and BinaryNode with the methods described below. An instance of either class is
a “tree of strings” — a Leaf has one string and a BinaryNode has no string itself but has two smaller
“trees of strings.” Sample solution is about 40 lines, many of which are just end.

(a) Leaf’s initialize takes one argument (assumed to be a string, no need to check).

(b) BinaryNode’s initialize takes two arguments, both assumed to be “trees of strings.” These are
the node’s children.

(c) concatAll takes no arguments and returns a single string that is all of a tree’s strings (i.e., all
strings of all tree descendants) concatenated together in left-to-right order.

(d) In BinaryNode, define a class method (like a Java static method) self.firstAlphabetical that
takes two strings and returns the string that comes first alphabetically. The casecmp method
already in the String class makes this very easy.

(e) firstAlphabetical takes no arguments and returns the string in the whole tree that comes first
alphabetically.

(f) iterate takes one argument of class Proc (i.e., something produced by lambda {|x| ...}) and
calls its argument with each string in the tree.

(g) In BinaryNode, define a class method self.concatAll that takes one argument, a “tree of
strings,” and returns all its strings concatenated together. Do not use the tree’s concatAll
instance method. Instead, use its iterate method. Hint: Use a local variable that starts with
the empty string and gets imperatively updated to a longer string during the iteration.

2. Define a class NaryNode that is like BinaryNode except it can have any positive number of children.
Sample solution is about 20 lines. Note:

• intialize should take an array of trees. It should raise an error if the array’s length is 0. Else
it should store a copy of the array in a field. Each tree in the array is one of the node’s children.

• For concatAll, firstAlphabetical and iterate, use the each method of the Array class (or
other Array methods taking blocks if you prefer) so your answers are at most a few lines long.

3. Now suppose you get tired of using Leaf.new all the time when building trees. Make it so that you can
put strings in your trees directly rather than using the Leaf class at all. Do this by adding concatAll
and firstAlphabetical methods to the built-in String class. Hint: The solution is perhaps a “trick”
but extremely short — just think about what these methods should return. Do not bother adding an
iterate method.

4. In a comment in your code, answer each of these questions in a few English sentences:

(a) If you built a tree using just the Leaf and BinaryNode classes but you put integers at each leaf
instead of strings, what would happen if you called the tree’s concatAll method? Why?

(b) If you used integers as in the previous problem but part of your tree was built with NaryNode,
what would happen if you called the tree’s concatAll method? Why?

(c) Why does NaryNode’s intialize method make a copy of its argument? What could happen if it
did not?

(d) Why might adding methods to the String class be a poor design choice in a large application?

1

5. The top-level method anagrams provided to you takes two strings, a word and a filename. It prints
every line of the file that is a permutation of the letters in the word, i.e., an anagram. It uses the
provided LetterCount class. Your job will be to modify this code so that it prints all anagrams that
can be formed with one or two lines in the file.

One-line anagrams should be printed as-is (that’s what the provided code already does). Two-line
anagrams should be printed on one line (i.e., two lines from the file become one printed line) with a
space between the two lines. For example, if the file had lines containing foo and bar and the word
was ofobar, you should print either foo bar or bar foo, but not both (you can pick what order the
two lines are printed). As a minor point, you can use the same line twice, so for ofofoo, you should
print foo foo if the file has a line foo.

While this problem requires only about 15 total lines of additional code, it also purposely requires you
to determine how some of the code provided to you works in order for you to figure out how change it.

A fun file to use for testing is /usr/share/dict/words on attu, though this file is very large (it has
every English word on its own line plus many other things — it is used for spell-checking) and Ruby
is not fast. The course website has some example outputs using this file.

How to do it:

(a) Add a method sum to LetterCount that produces a new LetterCount that has the sum of the
letter counts for self and its argument. This should make sense after reading the code or trying
it on some examples to understand what a LetterCount represents. Hints:
• This is easier than the difference method provided to you because sum always succeeds.

Sample solution is 7 lines.
• The hash in a LetterCount returns 0 for any key not in the hash. This is convenient here.

(b) Edit the body of the anagrams method. In addition to the code already there, do the following:
• Use an array to remember the previous lines that could possibly be combined with a second

line to produce an anagram. This array will only grow. Have each element be another array
with two elements: the text of the line and a LetterCount for the line. Do not put every line
in this array; just lines that could be combined to form an anagram.

• After adding a new element to this array, see if it can be combined with any of the previous
elements to produce an anagram, and if so then print it out. Note that the sum method will
prove useful here, along with difference and all_zeros.

Sample solution added a total of 8 lines and changed none of the lines already there.

6. Challenge Problems: You can receive full challenge-problem credit for doing 2 of the following 3
(and partial credit for 1).

• The versions of concatAll so far are inefficient in that for a tree with n strings, they create n
different strings as intermediate results, each one longer than the previous one. Add different
methods to produce the same result without creating all the intermediate strings. Hints: Make
two passes through the tree. To make a string of length len, use "x"*len.

• Provide another version of your anagram-finder that works for any number of words, not just 1
(like the code provided to you) or 2 (like your solution to problem 5).

• Reimplement your anagram-finder in Scheme or ML and write a paragraph or two about the
code’s similarities and differences from the Ruby version.

Turn-in Instructions

• Put all your solutions in one file, lastname hw6.rb, where lastname is replaced with your last name.

• The first line of your .rb file should be a Ruby comment with your name and the phrase homework 6.

• Go to https://catalysttools.washington.edu/collectit/dropbox/djg7/2125 (link available from
the course website), follow the “Homework 6” link, and upload your file.

2

