CSE 341, Spring 2008, Lecture 12 Summary

Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of
all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

This lecture discusses two topics: parametric polymorphism and what it means for two pieces of code to
be “equivalent.” For both topics, we will take a more conceptual/theoretical view rather than just showing
you, “how to do something in ML.” As the course progresses, we will have a few other lectures that focus more
on concepts and not just on some specific language constructs. This material is important for understanding
that the concepts are more essential than just how they appear in one language.

Parametric polymorphism is a fancy name for the “forall types” (i.e., types that mention type variables
like ’a) we have been using in ML. While statically typed functional languages have had such types for over
two decades, they are now also part of widely used object-oriented languages such as Java and C#.

As an example, consider the ML type (?ax’b)->(’bx’a), which is the type we could give to a function
that takes a pair and returns a pair that swaps the position of the argument’s pieces. What this means in
ML is, “for all possible types, call them alpha and beta, we have a function that takes a pair of an alpha
and a beta and returns a pair of a beta and an alpha.” This type affects the caller and the callee:

e The caller has the flexibility to use the function with any two not-necessarily-different types.

e The callee cannot make any assumption about what the types are. An amazing fact about ML is
that if a function of type (’ax’b)->(’bx*’a) returns, then it must act like the swapping function
fun f(x,y) = (y,x). After all, it cannot “do” anything with the pieces of the pair it is given.

To make the key notion of “for all” more explicit, let’s write this type as forall ’a, ’b. ((’a*’b)->(’bx*’a)).
This is not actually ML syntax (there is no way in ML to make the “for all”) explicit, but it helps explain
the general theory and where ML is limited.

Now, given a “for all type” of the form forall ’a. (t) where t is a type, we can explain “for all”
by saying that such a type can be instantiated by replacing it with the type t2 made from taking t and
replacing all the ’a with any type t3 (assuming there are not shadowing uses of forall ’a ... inside
t). For example, starting with forall ’a, ’b. ((’a*x’b)->(’b%*’a)) and instantiating it with string for
’a and int->int for ’b, we end up with (string * (int->int)) -> ((int->int) * string), which is
simply a less-general type than we started with.

We now have a very general way to describe an infinite number of possible types:

e We have a small collection of base types like int, string, and real.
e We can build types out of smaller types by making tuple types, function types, datatypes, etc.
e We can make a type like forall ’a. (t) where t can be any type.

There is nothing wrong with this definition, but ML is not quite this flexible. According to the definition
above, we could write a type like

(forall ’a. (’a => (Pax’a))) -> ((int*int) * (bool*bool))

This describes a function that takes a polymorphic pair-making function and returns a pair of pairs. In ML,
you cannot use “forall” like this. Instead, forall is always implicit (you don’t write it) and all the way to the
outside left (it is never part of a larger type). So when you write

(’a => (’ax’a)) -> ((int*int) * (bool*bool))
that is really saying

forall ’a. ((’a -> (Pax’a)) -> ((int*int) * (bool*bool)))



which is not quite the same thing. This type describes a function where the caller will have to instanitate ’a
with one type and then pass in a pair-making function for that type, rather than passing in a polymorphic
function.

This is admittedly a subtle point. To see an example, here is a function that has the first not-in-ML type
and does not have the second type:

fun f pairmaker = (pairmaker 7, pairmaker true)

This function does not type-check in ML. Type inference, which is the real reason ML has this “all the way
to the outside left” restriction will reject it because it looks like pairmaker has to take an int and a bool.
That would be possible if there were a way to say £ must be passed a polymorphic function. Then we could
call £ with arguments like fn y=>(y,y) but not with fn y=>(y+1,y). This limitation of ML arises rarely
in practice, but more often than never.

Let’s now compare parametric polymorphism with subtyping like you have seen in Java and we will study
near the end of the course. Consider again our swap function and its type:

fun swap (x,y) = (y,x) (* (Ca * ’b) > (b * ’a) *)
Compare that to a plain-old-Java static method that does the same thing:

class Pair {

Object x;

Object y;

Pair(Object _x, Object _y) { x=_x; y=_y; 2}

static Pair swap(Pair pr) {return new Pair(pr.y, pr.x);}

}

Ignoring the fact that Java is more verbose and does not have built-in support for pairs, there is still a very
big difference between these two approaches. In the ML version, we know the type of the pair returned is
not “just *bx*’a for any two types” but rather that this ’b and ’a are the same as the b and ’a used to
describe the argument to swap. So if we call swap(4,"hi"), we know the result is a string*int. This has
two advantages:

e Unlike in Java, callers do not have the inconvenience and error-proneness and cost of casting a field of
the result from Object back to what “we know” it will be.

e Unlike in Java, what “we know” is actually true. There is no way for a broken swap function not to
return a string*int given an int*string assuming it type-checks.

Subtyping has some complementary advantages we’ll study later, but using subtyping where what you want
is parametric polymorphism is unpleasant and not good style when you have a better choice. For many
years in Java, you did not have a better choice than subtyping code like the Pair class above, but then Java
added generics, which is just a synonym for parametric polymorphism. Using generics, our example would
look like this:

class Pair<T1,T2> {
T1 x;
T2 y;
Pair(T1 _x, T2 _y) { x=_x; y=_y; }
static <T1,T2> Pair<T2,T1> swap(Pair<T1,T2> pr) {
return new Pair<T2,T1>(pr.y,pr.x);
}
}

This has all the parametric-polymorphism advantages of the ML version. It is just a lot more verbose
syntactically since there is no type inference, we need explicit return statements, etc.

Parametric polymorphism becomes particularly useful for defined functions over containers (lists, arrays,
sets, hashtables, etc.) that have elements of the same type. As we have studied, not all functions over lists
are polymorphic, but many are, including the constructors:



val [] : ’a list

val :: : (Pa * (’a list)) -> ’a list (* infix is syntax *)
val map : ((’a -> ’b) * (’a 1list)) -> ’b list

val fold : (’a * ’b -> ’b) -> (’a list) -> ’b

What exactly, then is 1ist? It is not a type; you cannot say a function has type 1list->int, for example.
It is a type-constructor, something that makes a type out of another type. So int list is a type, ’a list
is a type, (int->int) list is a type, etc., and so there exist types like (int->int) list -> int and so
on. Remember for the examples above there is an implicit “for all” on the outside left. For example, the
type of [] is “an alpha list for all types alpha.”

We can define our own type-constructors in ML. It would be a poor language design to have the only
type-constructors be built-in features like lists. In general, if a feature is useful for built-in features, it is
useful for user-defined things too. To define a type-constructor in ML, we just use a datatype binding. We
explicitly give one or more type-constructor arguments that we can then use in the types of the constructors.
Here are two examples:

One of ’a
More of ’a * (’a non_mt_list)

datatype ’a non_mt_list

datatype (’a,’b) mytree
Leaf of ’a
| Node of ’b * (’a,’b) mytree * (’a,’b) mytree

The first one is a type for lists that have at least one argument. The second is for trees where leaves have one
type of data and internal nodes have a different type of data. Notice mytree is not a type, something like
(int,string) mytree is a type. Fortunately, type inference can still figure out all the types for us, since
Leaf and Node are just constructors with polymorphic types — Leaf has type ’a -> (’a,’b) mytree and
Node has type ’b * (’a,’b) mytree * (’a,’b) mytree -> (’a,’b) mytree. Here are 3 expressions and
the inferred types:

Node("hi",Leaf 17,Leaf 4) (* (string,int) mytree *)
Node(14,Leaf "hi",Leaf "mom") (* (int,string) mytree *)
(* Node("hi",Leaf 17,Leaf true) *) (* doesn’t type-check *)

Now that we can define our own type-constructors, there really was no need for ML to build in support
for lists at all. Yes, the syntax of writing :: infix (between its two arguments or subpatterns) and the
syntactic sugar of [el,e2,...,en] are nice, but other than that we could just have defined

datatype ’a list = Empty | Cons of ’a * ’a list

and had everything we needed.

Unfortunately, this is not quite the end of the story on ML parametric polymorphism. Without one
additional restriction, ML’s mutable references — which are sometimes useful, but we have used only in our
callback example when studying higher-order functions — can make the type system unsound. An unsound
type system does not actually prevent what it claims to prevent, such as treating an int as a function or
enforcing module signatures. This is an example of a program that demonstrates the problem:

val x = ref [] (* ’a list ref *)
val x := ["hi"] (% instantiate ’a with string *)

val (hd(!'x)) + 7 (* instantiate ’a with int -- bad!! *)

The rules we studied for type inference would accept this program even though we should not. To prevent
this, ML will reject the first line because of something called “the value restriction”. The value restriction
requires any expression that is given a polymorphic type to be a variable or a value (including function
definitions, constructors, etc.). Because ref [] is not a value, we can give it type (int list) ref or
(string list) ref but not (’a list) ref. But type inference cannot figure out what non-polymorphic
type to give x in our example, so either the programmer must supply an explicit type or the binding is



rejected by the type-checker. While it’s not at all obvious that this simple restriction makes the whole type
system sound, it turns out to be enough.

The value restriction does sometimes get in your way even when you are not using mutation (since the
type-checker does not know you are not using mutation). For example, this completely harmless code is
rejected:

val pr_list = List.map (fn x => (x,x))

As cool as partial application is, if the result would have a polymorphic type, we cannot bind it to a variable
due to the value restriction. We can either give an explicit non-polymorphic type or we can use an extra
function wrapper so that the expression we are using is already a value. (Recall functions are values.) So
any of these three approaches work fine:

val pr_list : int list -> (int*int) list = List.map (fn x => (x,x))
val pr_list = fun 1lst => List.map (fn x => (x,x)) 1st
fun pr_list 1lst = List.map (fn x => (x,x)) 1lst

You do not need to know anything about the value restriction really except how to work around it when
it comes up.

The idea that one piece of code is “equivalent” to another piece of code is fundamental to programming
and computer science. You are informally thinking about equivalence every time you simplify some code
or say, “here’s another way to do the same thing.” Also notice that our use of restrictive signatures in
the previous lecture was largely about equivalence: by using a stricter interface, we make more different
implementations equivalent because clients cannot tell the difference.

We want a precise definition of equivalence so that we can decide whether certain forms of code main-
tenance or different implementations of signatures are actually okay. We do not want the definition to be
so strict that we cannot make changes to improve code, but we do not want the definition to be so lenient
that replacing one function with an “equivalent” one can lead to our program producing a different answer.
There are many different possible definitions that resolve this strict/lenient tension slightly differently; we’ll
just consider one that is useful and commonly assumed by people who design and implement programming
languages.

The intuition behind our definition is as follows:

e A function f is equivalent to a function g (or similarly for other pieces of code) if they produce the
same answer and have the same side-effects no matter where they are called in any program with any
arguments.

e Equivalence does not require the same running time, the same use of internal data structures, the same
helper functions, etc. All these things are considered “unobservable”, i.e., implementation details that
do not affect equivalence.

As an example, consider two very different ways of sorting a list. Provided they both produce the same final
answer for all inputs, they can still be equivalent no matter how they worked internally or whether one was
faster. However, if they behave differently for some lists, perhaps for lists that have repeated elements, then
they would not be equivalent.

However, the discussion above was simplified by implicitly assuming the functions always return and have
no other effect besides producing their answer. To be more precise, we need that the two functions when
given the same argument in the same environment:

1. Produce the same result (if they produce a result).
2. Have the same (non)termination behavior; i.e., if one runs forever the other must run forever.
3. Mutate the same memory in the same way.

4. Do the same input/output.



5. Raise the same exceptions.

While this list of requirements makes equivalence stricter, they are all important for knowing that if we
have two equivalent functions, we could replace one with the other and no use anywhere in the program will
behave differently.

Moreover, if you look at requirements 3 and 4, you will see that these are exactly the things that functional
programs like ML discourage you from doing. Yes, in ML you could have a function body mutate some global
reference or something, but it is generally bad style to do so. Other functional languages are pure functional
languages meaning there really is no way to do mutation inside (most) functions.

If you “stay functional” by not doing mutation, printing, etc. in function bodies as a matter of policy,
then callers can assume lots of equivalences they cannot otherwise. For example, can we replace f (x)+f (x)
with f(x)*2? In Java, that can be a wrong thing to do since calling £ might update some counter or print
something. In ML, that’s also possible, but far less likely as a matter of style, so we tend to have more
things be equivalent. In a purely functional languages, we are guaranteed the replacement does not change
anything. The general point is that mutation really gets in your way when you try to decide if two pieces of
code are equivalent — it’s a great reason to avoid mutation in the first place.

Now that we have defined equivalence, we can discuss three important and very general situations where
ML-style functions are equivalent to each other. However, we will delay this discussion until later in the
Scheme portion of the course (due to time constraints). Instead, we let’s consider “syntactic sugar,” a phrase
we have used informally for several lectures.

A language construct is syntactic sugar if every use of it can be rewritten in terms of another more basic
language construct. Of course, the rewritten version must be equivalent. Recognizing that some construct
is syntact sugar helps simplify a language definition because we can just define the language in terms of the
program after the rewriting, often called the desugared code. Recall some examples of syntactic sugar we
have seen:

e ¢l andalso e2 can be defined as if el then e2 else false
e if el then e2 else e3 can be defined as case el of true => e2 | false => e3
e tuples are really records with field names 1, 2, ...

Because of possible side-effects or nontermination, it is essential that we think about what expressions the
desugared version evaluates in what order. For example, el andalso e2is not equivalent to if e2 then el else false
because the expression e2 might not terminate.
It is almost the case that let val p = el in e2 end can be sugar for (fn p => e2) el. After all, for
any expressions el and e2 and pattern p, both pieces of code:

e Evaluate el to a value.

e Match the value against the pattern p.

e If it matches, evaluate e2 to a value in the environment extended by the pattern match.
e Return the result of evaluating e2.

Since the two pieces of code “do” the exact same thing, they must be equivalent. In Scheme, this will be
the case. In ML, the only difference is the type-checker: The variables in p are allowed to have polymorphic
types in the let-version, but not in the anonymous-function version.

The reason is our earlier discussion that all forall-types have to be on the outside left. For exam-
ple, consider let val x = (fn y => y) in (x 0, x true) end. This silly code type-checks and returns
(0,true) because x has type ’a->’a. But (fn x => (x 0, x true)) (fn y => y) does not type-check
because there is no non-polymorphic type we can give to x and function-arguments cannot have polymorphic

types.



