CSE 341, Spring 2008, Lecture 25 Summary

Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of all
the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

This lecture covers several topics related to type systems for OO languages and how they relate to other
topics:

e Comparing named types to structural types

e Contrasting types and classes, and why languages like Java, C#, and C++ choose to combine the
concepts

e Comparing parametric polymorphism to subtyping

e Combining parametric polymorphism to subtyping, and the occasional usefulness of bounded polymor-
phism

Named types vs. structural types

The previous lecture considered types for objects where the types simply listed the types of fields and/or
methods that objects with that type would have. We used these types to consider subtyping. However, in
languages like Java, types don’t look like this. Instead, they look like the names of classes or interfaces. So
we write a type like C and then look at the definition of some class C to see what fields/methods objects
with type C would have. We say languages like Java have named types (or nominal typing) as opposed to
structural types (or structural typing). This makes sense: Does a type simply name something or does it
describe an object’s structure?

Everything we learned about subtyping with structural types also applies to named types. If we want
C to be a subtype of D, then we must be able to treat every object of type C as though it had type D, with
covariant method results, contravariant method arguments, etc.

With named types like in Java, we only have the subtyping that is explicitly declared by the programmer
(plus transitivity). For example, given

class C extends D implements I,J { ... }

the only supertypes of the type C are D, I, J, and the supertypes of D, I, and J. This allows fewer supertypes
than structural typing. After all, suppose C describes objects that have an x field of type int and a y field
of type int. It would be sound to let C be a subtype of some “unrelated” type Foo that happens to promise
nothing other than an x field of type int.

The argument between structural typing and nominal typing has been waged for decades and is unlikely
to be resolved. Proponents of structural subtyping point out that it allows more code reuse (in our example
above, passing a C to a method expecting a Foo for example) while remaining sound. Moreover, with
structural subtyping, when one creates a new interface type, one does not have to go back to class definitions
that already exist to add the interface to the class definition.

Proponents of nominal typing claim that less code reuse catches more bugs. For example, if cowboys
and artists both have draw methods, some method that only uses an argument’s draw method and intends
to paint a picture would in fact take both cowboys and artists under structural subtyping. Having fewer
subtypes can also make field and method lookup a little faster in the code generated by a compiler. (We
won’t describe why since this isn’t a compilers course.) Finally, since a class-based OO language requires you
to write down class definitions anyway, using named types based on these class definitions saves programmers
the trouble of writing down structural types.

However, classes and types are not the same thing...



Classes vs. Types

Many languages confuse classes and types. For example, in Java every class is a type, and most types
are classes. (Other types include int, array types, and interfaces.) Moreover, we require that a subclass is
a subtype: If C extends D, then C is a subtype of D. Conversely, the only subtyping that is not the result of
subclassing is from implementing interfaces.!

So are classes and types the same thing? No!

A class is a run-time concept. Every object has a class. An object’s class determines how it responds to
messages. Subclassing inherits behavior from the superclass, saving code duplication and enabling special-
ization via dynamic dispatch.

A type is a static (“compile-time”) concept. Every expression has a type. An expression’s type describes
what operations can be performed without the program causing an error the type system is supposed to
prevent. Subtyping is about substitutability, as studied in the previous lecture.

So why do languages like Java confuse subclassing and subtyping? Because it’s almost always what you
want. But not quite always. It might be nice to have a subclass that was not a subtype. For example,
consider a 2DPoint class with methods:

double get_x() { ... }

double get_y() { ... %}

void set_x(double v) { ... }

void set_y(double v) { ... }

double distBetween(2DPoint other) { ... }

A subclass 3DPoint could inherit the first four methods and override distBetween, having it take a 3DPoint
instead:

double distBetween(3DPoint other) { ... }

However, if a subclass must be a subtype such overriding is wrong because method arguments are contravari-
ant. If we took a 3DPoint, subsumed it to a 2DPoint and called its distBetween with another 2DPoint, the
type system would allow it but the body of 3DPoint’s distBetween would be called with an argument of
the wrong class. We would like instead in this example just to disallow subsuming a 3DPoint to a 2DPoint.
This is not possible in Java, but that doesn’t mean it isn’t useful.

(In actual Java, declaring distBetween to take a 3DPoint in the subclass does not actually cause overrid-
ing. Instead, instances of 3DPoint then have two distBetween methods, one used for instances of 2DPoint
and one used for instance of 3DPoint. However, which method gets called is decided statically, based on
the compile-time type of the argument at any call-site. We won’t have time to study this idea, called static
overloading, carefully. So since calling the 2DPoint distBetween on a 3DPoint may make very little sense,
we may want to override double distBetween(2DPoint other) to raise an exception. However, this still
won’t catch the error at compile time.)

Conversely, we may want a subtype that is not a subclass. For example, different classes may have
display methods that take some window and put a picture in it. They may not share any code; we simply
want a type that describes objects with such methods. In Java, one would use an interface like:

interface Displayable {
void display(Window w);
}

Implementing interfaces are exactly the way Java programmers create subtypes without using subclassing.

Having “untangled” the difference between classes and types, we can also better understand Java’s
abstract methods and classes. Because abstract methods provide no behavior, they really have nothing to
do with subclassing and inheritance. They are entirely a typing thing. An abstract method ensures: (1)

1Well, there is also covariant array subtyping, but as discussed in section, this is a controversial decision that contradicts
what we studied with subtyping.



All non-abstract subclasses override the method, and (2) No instances of a class with abstract methods
are created. These are compile-time checks (i.e., part of the type system). The reason to prefer abstract
methods over non-abstract methods that simply raise exceptions is to get this compile-time check. This
reason is significant, but there is no other reason.

Parametric polymorphism vs. subtyping

Scheme and Ruby really are not that different beyond Scheme having more parentheses and Ruby having
dynamic dispatch by default (rather than something the programmer has to code up). ML and Java are much
more different because their type systems take complementary approaches to supporting code reuse while
still being sound. ML uses parametric polymorphism (see lecture 12, in short those ’a and ’b types) whereas
Java uses subtyping. These two type system features are complementary. Neither is a good substitute for
the other. That is exactly why Java eventually added generics (a synonym for parametric polymorphism).

Consider various ML functions with polymorphic types:

compose: (’a -> ’b) * (°’b -> ’c) -> (’a -> ’c¢)
isempty: ’a list -> bool
map: (’a -> ’b) * ’a list -> ’b list

These types are sound, expressive (they let callers use the functions for arguments of various types), and
convenient. For convenience, notice that when we call map with arguments of type int->bool and int list,
we do not need any casts on the arguments or the result, which the type-checker determines is bool list.
Subtyping is not a good substitute here. Our only reasonable choice for the type of map in a language like
Java (ignoring generics) is something like

(Object -> Object) * Object list -> Object list

But now using the function is inconvenient and error-prone. Given an int->bool, we would need to wrap it
with an Object->0bject that performed various casts. Similarly, the result is not the type we want, so we
would have to extract elements from the list and then cast them to bool. These casts actually have run-time
cost. Also, if we get them wrong we may get a run-time error, i.e., the type system is not really helping us.
Also, perhaps the implementation of map is wrong and does not actually return a list with elements of the
types we expect. None of these shortcomings arise with parametric polymorphism.

In other examples, subtyping is exactly what you want. For example, consider a function that determines
if a 2DPoint is in the right half of the plane:

boolean isXPos(2DPoint p) { return p.x > 0; }

Subtyping makes it very convenient to call isXPos with a subtype of 2DPoint (such as 3DPoint). One can
encode similar ideas with type variables, but subtyping still captures the idea quite directly.

Subtyping is also convenient for using objects like closures since subtypes can have “more” “private
fields” than the supertype promises they have. Here is a simple example where the interface J just describes
anything with a function f that takes and returns an int but subclasses can have other fields and methods:

bRENAS

interface J { int f(int); }
class MaxEver implements J {
private int m = O;
public int f(int i) { if(i > m) m = i; return m; }

If you have a language with parametric polymorphism and subtyping (such as Java as of version 1.5), you
can program with the benefits of both. In fact, you sometimes want to combine the two ideas with bounded
polymorphism. Whereas a type like >a means “for all types *a” and a type like C means “the type C, which
could actually be any subtype of C”, a bounded type says, “for all types ’a that are subtypes of type Foo.”
This is more powerful than just using Foo or just using ’a. As a simple example consider a function of type,
“for all ’a that are subtypes of Foo, take an ’a and return an ’a.” The body can assume the argument has
everything a Foo has. And if some caller passes a Bar that is a subtype of Foo, then the caller knows the



result is a Bar, not just a Foo. A call-site that passed an argument that was not a subtype of Foo would be
rejected as a type error.

The code associated with this lecture considers a simple linked-list library example in Java. The first
version uses subtyping, which is not the right thing; it ends up using casts that can fail at run-time. The
second version uses parametric polymorphism, which works better but the copy method still has a less
permissive type than we would like. The third version uses bounded polymorphism to give copy a more
useful type. Note that List<B> cannot be a subtype of List<A> even if B is a subtype of A because our lists
our mutable. This relates to the field subtyping in the previous lecture.



