
CSE 341, Autumn 2010
Assignment #3 - ML: Curried Functions / Personality Test (100 points)

Due: Friday, October 22, 2010, 11:30 PM

This assignment focuses on higher-order functions, composition of functions, curried functions, defining operators, and
anonymous functions in ML as described in Chapter 5 of the Ullman textbook. You are allowed to use any constructs
from Chapters 1-5 of Ullman, subject to other restrictions on various parts of the assignment described on the following
pages.

Place all of your functions and variables into two files called hw3curry.sml (Parts A-C) and hw3ptest.sml (Part D)
and submit them from the class web page. If one of your files uses code defined in the other, it is fine for one file to load
the other file with a use declaration.

In writing this problem set you will need a set of utility functions defined in a file called utility.sml available from the
Homework section of the class web site. You will also need a file called utility-ptest.sml that has supporting data
and functions for Part D, the personality test.

NOTE: In lecture, we wrote higher-order functions named map, filter, and reduce. Those functions appear in
utility.sml, except that map and filter have been renamed to mapx and filterx so as not to conflict with with
ML's built-in map and filter functions. You can still call mapx, filterx, and reduce to solve problems on this
assignment except if a given part of the assignment forbids it.

If the function you implement to solve a given problem is useful for solving another later problem, you should call
the earlier function from the later function to reduce redundancy.

Part A - Defining Operators:
Define the following operators as top-level symbols. You may use any of the ML syntax we have learned so far; you are
not subject to the restrictions described in other parts of the assignment.

1. <<

val << = fn : int * int -> int

Define a "left-shift" operator << similar to the one seen in C and Java. The expression a << b should multiply the
integer a times 2 to the b power. For example, 15 << 1 produces 30, and 6 << 3 produces 48, and 0 << 5 produces 0.
If the power b is negative, you should raise an exception of type OutOfRange (an that exception type you should define
as a top-level symbol).

2. ~~

val ~~ = fn : 'a list * 'a list -> 'a list

Define a "list interleave" operator ~~ . The expression list1 ~~ list2 should produce a new list whose elements
come from list1 and list2 in alternating order. For example, [1,2,3] ~~ [4,5,6] should produce
[1,4,2,5,3,6]. If the lists are not the same length, the remaining elements from the longer list should all be placed at
the end of the result list. For example, [8,6] ~~ [3,9,1,7] should produce [8,3,6,9,1,7] and [12,2,4,0] ~~
[5] should produce [12,5,2,4,0].

1 of 5

Part B - Higher-Order Functions:
The problems in this part of the assignment must be solved as one-line functions involving mapx, filter, and reduce
and the infix operator -- (all included in utility.sml). If you prefer, you may use ML's real versions of these
functions: map, List.filter, and List.foldl/foldr. You are not allowed to use if/else expressions, let
expressions, or pattern matching. You also should not need to use recursion in your definitions; that is, they do not need
to call themselves. You should declare any helper functions as anonymous functions. You may use the standard
functions length and real and all of the standard operators (+, -, ~, *, /, div, mod, @, ::, <, >, <=, >=, =, <>). You
may also use the op keyword to convert a standard operator into a function.

3. multiples

val multiples = fn : int * int -> int list

Define a function multiples that takes two integers k and n as arguments and produces a list of the first k multiples of n.
For example, the call of multiples(5, 2) should produce [2,4,6,8,10].

4. sumTo

val sumTo = fn : int -> real

(You have already implemented this function in Homework 1. The point here is to re-implement it in a new way using
higher-order functions and the other new material shown this week.)

Define a function sumTo that accepts an integer n and computes the sum of the first n reciprocals. That is:

€

1

ii=1

n

∑
For example, sumTo(3) should produce (1 + 1/2 + 1/3) = 1.83333333.... You may assume that the function is not passed
a value of n that is 0 or negative.

5. countNegative

val countNegative = fn : int list -> int

(You have already implemented this function in Homework 1. The point here is to re-implement it in a new way using
higher-order functions and the other new material shown this week.)

Define a function countNegative that takes a list of integers as an argument and produces a count of the number of
negative integers in the list. For example, countNegative([3,17,~9,34,~7,2]) should produce 2.

6. allPairs

val allPairs = fn : int * int -> (int * int) list

Define a function allPairs that takes two integers m and n as arguments and produces a list of all tuples whose first
value is between 1 and m and whose second value is between 1 and n. The tuples should appear in nondecreasing order
using the first value and within those groups, in increasing order by the second value. For example, allPairs(3, 4)
should produce [(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4)]. You
may assume that the values of both m and n will be positive integers.

2 of 5

Part C - Curried Functions:
These problems must be solved as one-line val declarations using curried functions and composition. This will allow
you to practice partially instantiated functions. You are not allowed to use the fun keyword or anonymous function
notation (fn). You also should not use if-then-else expressions, patterns, or matches. Instead define these functions
with val declarations in terms of standard functions and standard operators (see the list above).

Use the o operator to compose functions. You are allowed to use ML's built-in curried functions map, filter, and
foldl/foldr. But you should not use the "CSE 341" versions mapx, filterx, and reduce from utility.sml,
because they are not in curried form. You may use other definitions from utility.sml, such as the operator -- and the
curry function that allows you to partially instantiate infix operators like +, -, /, div, mod, --, <, >, etc. For example:

val increment = curry op+ 1;

7. timesTwoPlusThree

val timesTwoPlusThree = fn : int -> int

Define a function timesTwoPlusThree that takes an integer argument n and produces 2n + 3. For example, the call of
timesTwoPlusThree 6 should produce 15.

8. positive

val positive = fn : int -> bool

Define a function positive that takes an integer argument n and returns true if n is positive (strictly greater than 0) and
false otherwise. For example, positive 4 produces true and positive ~7 produces false.

9. evens

val evens = fn : int -> int list

Define a function evens that takes an integer argument n and returns a list of the first n even numbers, starting with 2.
For example, the call of evens 7 produces [2,4,6,8,10,12,14]. You may assume that n is not negative.

10. roots

val roots = fn : int list -> int list

Define a function roots that takes a list of integers as an argument and produces a list of the square roots of the positive
integers in the list, rounded to the nearest integer. Use ML's built-in functions such as round, real, and Math.sqrt to
help you. Your function should ignore numbers that are not positive integers (i.e., should exclude them from the result).
For example, the call of roots [1,3,~8,14,0,7,~22,45] should produce [1,2,4,3,7].

11. acronym

val acronym = fn : string list -> string

Define a function acronym that takes a list of strings as an argument and produces a string composed of the uppercased
first letters of each string in the list. Use ML's built-in functions such as explode, implode, hd, etc., along with the
Char.toUpper function that returns the uppercase version of a character, to help you. For example, the call of acronym
["what", "you", "see", "is", "what", "you", "get"] should produce "WYSIWYG" and the call of acronym
["there", "ain't", "no", "such", "thing", "as", "a", "free", "lunch"] should produce
"TANSTAAFL". You may assume that there are no empty strings in the list.

12. reverseStrings

val reverseStrings = fn : string list -> string list

Define a function reverseStrings that takes a list of strings and produces the list obtained by reversing the order of the
letters in each string and reversing the overall order of strings in the list. Use ML's built-in functions including the built-in
function rev that reverses a list. For example, the call of reverseStrings ["four", "score", "and",
"seven", "years", "ago"] should produce a result of ["oga","sraey","neves","dna","erocs","ruof"].

3 of 5

Part D - Personality Test (hw3ptest.sml):
This larger part involves working with a personality test described in detail below. Your code goes into hw3ptest.sml.

13. answer

(string * int list * string) list

The overall result you are computing for this part of the assignment is a val declaration to define a variable named
answer that contains a list of triples. Each triple in your list should contain information for one person from the variable
called data that is defined in utility-ptest.sml. Each triple should have the following three elements:

(person's name, list of their four personality scores, personality type)

This information constitutes a solution to the Keirsey personality test as described below. Obviously you will write many
helper functions to be able to solve this task. You may use the full range of ML features, including everything we have
studied so far and functions from the ML library (e.g., Math, Int, String, Real, List).

You can also use any functions in utility.sml and utility-ptest.sml. The second utility file contains a useful
function named quicksort, which accepts two parameters: a "less-than" comparison function (a function that accepts
two values and returns true if the first value comes before the second), and a list of values. For example,
quicksort(op<, [1,~5,17,2,3,~2,99,5]) produces [~5,~2,1,2,3,5,17,99].

Sample output is available from the class web site. Your list must be sorted by personality type and sub-sorted by
name (i.e., alphabetical within a given personality type). Your variable should be of the type shown above.

You can display the result by calling displayAll(answer). The rest of this document describes the personality test.

The bulk of this assignment involves developing code that evaluates data obtained from the Keirsey personality test. The
data will be in the form of a list of entries, one per person, where each entry is a tuple with a name (of type string)
followed by a string of seventy characters (As, Bs, and dashes). You may assume all the As and Bs are in uppercase.

The Keirsey test measures four independent dimensions of personality:

• E xtrovert versus Introvert (E vs I): what energizes you
• S ensation versus iNtuition (S vs N): what you focus on
• T hinking versus Feeling (T vs F): how you interpret what you focus on
• J udging versus Perceiving (J vs P): how you approach life

Individuals are categorized on one side or the other of each dimension. The corresponding letters are put together to form
a personality type. For example, an extroverted, intuitive, thinking, perceiving person is referred to as an ENTP.

Remember that the Keirsey test involves 70 questions answered either A, B or - (a dash indicating no answer). You should
compute a score in each of the four dimensions by computing the percent of B responses for that dimension. Some of the
characters will be dashes to indicate that the user did not answer the question. These answers should not be included in
the percent computation. The percentages should be rounded to the nearest integer.

These numbers are then converted into a string of letters. The A answers correspond to E, S, T, and J. The B answers
correspond to I, N, F, and P. If a person is closer to the A side, use that letter. If they are closer to the B side, use that
letter. If they are exactly in the middle, use "X".

The provided utility-ptest.sml has a function translate1 that takes a string of 70 As, Bs or dashes, and returns a
list of 4 lists of strings, one for each dimension of the personality test. The fact that this function is called translate1 is
a hint that you may want to define your own functions (translate2, translate3, etc) that perform other
transformations on the data. You also have access to all of the utility functions (quicksort, mapx, filterx, reduce)
and are encouraged to use them. You may also use ML's built-in curried versions of these functions if you prefer.

Your program should not depend on the specific number 70, although we assume that the answers always appear in a
particular pattern that is repeated every 7 characters and we are assuming that the overall length is a multiple of 7. You
also will write code specific to this personality test and its four dimensions. You may assume that it will be possible to
compute a percentage for each dimension (i.e., that no user has all blank answers for any of the four dimensions).

For this part of the assignment, you are allowed to define helper functions and val declarations at the top level.

4 of 5

Extra Credit - Distance in 4-Space:
Another way to look at the personality data is to think of it as coordinates in 4-space. We can use these coordinates to
compute distances between individuals. For our purposes, we will round the 4-dimensional distance to the nearest integer.

X. bigAnswer

val bigAnswer : (string * int * (string * int) list) list

(1 point) Define a variable bigAnswer that is a list of triples of the type shown above. The first element should be a
person's name, the second element should be their average distance from other people (this can be the truncated average of
the rounded integers), and the third element should be a list of distance tuples that have a person's name and their distance
from the given individual. A person should not appear in their own list of distance tuples. The overall list should be
sorted alphabetically by name. The individual distance tuple lists should be sorted by increasing distance from the
individual. A sample output will be posted on the course web site.

Grading and Submission:
For reference, our solution to Parts A-C is 22 "substantive" lines long according to the class Indenter page, excluding
blank lines and comments. Our solution to Part D is 24 "substantive" lines long, excluding blank lines and comments
(and 46 "substantive" lines long with the extra credit). You don't need to match these numbers or even come close to
them; they are just rough guidelines.

Your program should not produce any syntax errors when loaded into the ML interpreter. Your code also should not
produce any warning messages, such as "non-exhaustive match." You may lose points if you name your functions or
other top-level values incorrectly, even if their behavior is correct.

Your code should work for both basic and advanced cases. Make sure to perform your own testing, and always remember
to test edge cases and bizarre values, such as negative numbers, empty lists, zeros, etc. unless the particular problem says
you can assume that you won't encounter those.

As always, if the solution to a previous problem is useful in helping you solve a later problem, you should call the earlier
function from the later function. You can include any testing code you develop (although it should be labeled as such).

You are expected to use good programming style, such as naming, indentation/spacing, and avoiding redundancy when
possible. Avoid long lines of over 100 characters in length; if you have such a line, split it into multiple lines.

Favor the use of patterns rather than if-then-else to distinguish between base and recursive cases. Favor the ::
operator to grow lists versus the @ operator (though the @ operator is sometimes necessary and is not forbidden entirely).

Place a descriptive comment heading at the top of your program along with a comment header on each function, including
any preconditions it assumes. Redundancy in general, such as recomputing a value unnecessarily or having unneeded
recursive cases, should be avoided.

5 of 5

	CSE 341, Autumn 2010
Assignment #3 - ML: Curried Functions / Personality Test (100 points)
Due: Friday, October 22, 2010, 11:30 PM

