
CSE 341

Lecture 5

efficiency issues; tail recursion; print

Ullman 3.3 - 3.4; 4.1

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Efficiency exercise

• Write a function called reverse that accepts a list and

produces the same elements in the opposite order.

� reverse([6, 2, 9, 7]) produces [7,9,2,6]

• Write a function called range that accepts a maximum

integer value n and produces the list [1, 2, 3, ..., n-1, n].

Produce an empty list for all numbers less than 1.

� Example: range(5) produces [1,2,3,4,5]

3

Flawed solutions

• These solutions are correct; but they have a problem...

fun reverse([]) = []
| reverse(first :: rest) =

reverse(rest) @ [first];

fun range(0) = []
| range(n) = range(n - 1) @ [n];

4

Efficiency of the @ operator

val x = [2, 4, 7];
val y = [5, 3];
val a = 9 :: x;
val z = x @ y;

• The :: operator is fast: O(1)

� simply creates a link from the first element to front of right

• The @ operator is slow: O(n)

� must walk/copy the left list and then append the right one

� using @ in a recursive function n times : function is O(n2)

2x 4 7

5y 39a

2z 4 7

5

Flawed solution in action

fun reverse([]) = []
| reverse(first :: rest) =

reverse(rest) @ [first];
reverse([2, 4, 7, 6]);

rest 4 7 62first

rest 7 64first

rest 67first

rest []6first[] @

@6

@6 7

6 7 4 @

6

Fixing inefficient reverse

• How can we improve the inefficient reverse code?

fun reverse([]) = []
| reverse(first :: rest) =

reverse(rest) @ [first];

� Hint: Replace @ with :: as much as possible.

� :: adds to the front of a list. How can we perform a

reversal by repeatedly adding to the front of a list?

(Think iteratively...)

7

Better reverse solution

fun reverse([]) = []
| reverse(L)

let (* lst accumulates reversed values *)
fun helper(lst, []) = lst
| helper(lst, first::rest) =

helper(first::lst, rest)
in

helper([], L)
end;

• The parameter lst here serves as an accumulator.

8

Fixing inefficient range

• How can we improve the inefficient range code?

fun range(0) = []
| range(n) = range(n - 1) @ [n];

� Hint: Replace @ with :: as much as possible.

� Hint: We can't build the list from front to back the way it's

currently written, because n (the max of the range) is the

only value we have available.

� Hint: Consider a helper function that can build a range in

order from smallest to largest value.

9

Better range solution

fun range(n) =

let

fun helper(lst, i) =

if i = 0 then lst

else helper(i :: lst, i - 1)

in

helper([], n)

end;

• The parameter lst here serves as an accumulator.

10

Times-two function

• Consider the following function:

(* Multiplies n by 2; a silly function. *)
fun timesTwo(0) = 0
| timesTwo(n) = 2 + timesTwo(n - 1);

• Run the function for large values of n.

Q: Why is it so slow?

• A: Each call must wait for the results of all the other calls

to return before it can add 2 and return its own result.

11

Tail recursion

• tail recursion: When the end result of a recursive
function can be expressed entirely as one recursive call.

• Tail recursion is good .
A smart functional language
can detect and optimize it.

� If a call f(x) makes a
recursive call f(y), as its
last action, the interpreter
can discard f(x) from the
stack and just jump to f(y).

• Essentially a way to implement iteration recursively.

12

Times-two function revisited

• This code is not tail recursive because of 2 +

(* Multiplies n by 2; a silly function. *)
fun timesTwo(0) = 0
| timesTwo(n) = 2 + timesTwo(n - 1);

• Exercise: Make the code faster using an accumulator.

• accumulator: An extra parameter that stores a partial

result in progress, to facilitate tail recursion.

13

Iterative times-two in Java

// Multiplies n by 2; a silly function.
public static int timesTwo(int n) {

int sum = 0;
for (int i = 1; i <= n; i++) {

sum = sum + 2;
}
return sum;

}

14

Iterative times-two in Java, v2

// Multiplies n by 2; a silly function.
public static int timesTwo(int n) {

int sum = 0;
while (n > 0) {

sum = sum + 2;
n = n - 1;

}
return sum;

}

15

Tail recursive times-two in ML

(* Multiplies n by 2; a silly function. *)
fun timesTwo(n) =

let
help(sum, 0) = sum

| help(sum, k) = help(sum + 2, k - 1)
in

help(0, n)
end;

• Accumulator variable sum
grows as n (k) shrinks.

16

Efficiency and Fibonacci

• The fibonacci function we wrote previously is also

inefficient, for a different reason.

� It makes an exponential number of recursive calls!

� Example: fibonacci(5)
– fibonacci(4)

–fibonacci(3)
» fibonacci(2)
» fibonacci(1)

–fibonacci(2)

– fibonacci(3)
–fibonacci(2)
–fibonacci(1)

� How can we fix it to make fewer (O(n)) calls?

17

Iterative Fibonacci in Java

// Returns the nth Fibonacci number.
// Precondition: n >= 1
public static int fibonacci(int n) {

if (n == 1 || n == 2) {
return 1;

}
int curr = 1; // the 2 most recent Fibonacci numbers
int prev = 1;

// k stores what fib number we are on now
for (int k = 2; k < n; k++) {

int next = curr + prev; // advance to next
prev = curr; // Fibonacci number
curr = next;

}
return curr;

}

18

Efficient Fibonacci in ML

(* Returns the nth Fibonacci number.
Precondition: n >= 1 *)

fun fib(1) = 1
| fib(2) = 1
| fib(n) =

let
fun helper(k, prev, curr) =

if k = n then curr
else helper(k + 1, curr, prev + curr)

in
helper(2, 1, 1)

end;

19

The print function (4.1)

print(string);

• The type of print is fn : string -> unit

� unit is a type whose sole value is () (like void in Java)

� unlike most ML functions, print has a side effect (output)

• print accepts only a string as its argument

� can convert other types to string:

Int.toString(int), Real.toString(real),

Bool.toString(bool), str(char), etc.

20

"Statement" lists

(expression; expression; expression)

• evaluates a sequence of expressions; a bit like {} in Java

• the above is itself an expression

� its result is the value of the last expression

• might seem similar to a let-expression...

� but a let modifies the ML environment (defines symbols);

a "statement" list simply evaluates expressions, each of

which might have side effects

21

Using print

- fun printList([]) = ()
= | printList(first::rest) = (

print(first ^ "\n);
printList(rest)

);
val printList = fn : string list -> unit

- printList(["a", "b", "c"]);
a
b
c
val it = () : unit

22

print for debugging

(* Computes n!; not tail recursive. *)
fun factorial(0) = 0
| factorial(n) = (

print("n is " ^ str(n));
n * factorial(n - 1)

);

• Useful pattern for debugging:

� (print(whatever); your original code)

