
CSE 341

Lecture 8

curried functions

Ullman 5.5

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Recall: helper ML files

• We are starting to accumulate lots of helper code

� map, filter, reduce, --, etc.

• Let's put it into a helper file utility.sml

� in our other programs, we can say:

use "utility.sml";

3

Curried functions (5.5)

• Recall that functions really have just 1 parameter:

a tuple representing each value you want to pass

� the parameters are dependent on each other;

must all be passed at once, as a tuple

• curried function: Divides its arguments such that they

can be partially supplied, producing intermediate

functions that accept the remaining arguments.

� A more powerful way to connect a function to parameters

� can only be used with functions defined in a curried form

(in "pure" functional langs, EVERY function can be curried)

4

Curried function syntax (5.5)

fun name param1 param2 ... paramN = expression;

• Example:

(* Computes x ^ y. Assumes y >= 0. *)
fun pow x 0 = 1
| pow x y = x * pow x (y - 1);

5

Partial application

• If your function is written in curried form, you can supply

values for some of its arguments to produce a function

that accepts the remaining arguments.

� That new partial application function can be useful to pass

to map, filter, reduce, o, or use in a variety of ways.

• Example:

- val powerOfTwo = pow 2;
val powerOfTwo = fn : int -> int

- powerOfTwo 10;
val it = 1024 : int

6

How currying is applied

• Note the type of pow:

- fun pow x 0 = 1
= | pow x y = x * pow x (y - 1);

val pow = fn : int -> int -> int

� What does this type mean?

• Every application of curried functions is a composition:

� pow 2 10 creates an intermediate function (pow 2)
and calls it, passing it the argument 10

7

ML's "real" map function (5.6.3)

• ML includes a map function, but it is in curried form:

fun map F [] = []

| map F (first::rest) = (F first) :: (map F rest);

� What is the type of this map function?

• It is done this way so that you can partially apply map:
- val absAll = map abs;
val absAll = fn : int list -> int list

- absAll [2, ~4, ~6, 8, ~10];
val it = [2,4,6,8,10] : int list

- absAll [~1, ~9, 4, ~19];
val it = [1,9,4,19] : int list

8

ML's "real" filter function

• It's really called List.filter

� or, at the top of your program, write: open List;
and then you can just write filter *

� it is in curried form: filter P list

- open List;
- fun nonZero(x) = x <> 0;
- filter nonZero [8, 0, 0, 2, 0, 9, ~1, 0, 4];
val it = [8,9,~1,4] : int list

(* using open is discouraged; it clutters the global namespace)

9

ML's "real" reduce functions (5.6.4)

• It's really called List.foldl and List.foldr

� but you can just write foldl or foldr

� each takes an initial value to start the folding with

� in curried form: foldl F initialValue list

– foldl applies from the left: F z (F y (... (F a initialValue)))

– foldr goes from the right: F a (F b (... (F z initialValue)))

- foldl op+ 0 [8, 0, 0, 2, 0, 9, ~1, 0, 4];
val it = [22] : int

- foldr op^ "??" ["hi", "how", "are", "you"];
val it = "hihowareyou??" : string

- foldl op^ "??" ["hi", "how", "are", "you"];
val it = "youarehowhi??" : string

10

foldl, foldr exercise

• Define a function len that uses foldl or foldr to

compute the length of a list.

• Solution:

fun len lst =
foldr op+ 0 (map (fn x => 1) lst);

11

Currying operators

• The common infix binary operators such as op+ aren't in

curried form. But we can fix that!

• The following curry function wraps an un-curried two-

argument function into a curried form:

- fun curry f x y = f(x, y);
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

- val doubled = curry op* 2;
val doubled = fn : int -> int

12

Curried operator exercise

• Define a function numZeros that accepts a list and

produces the number of occurrences of 0 in the list.

� Use curried functions, operators, composition, and

map/filter/reduce.

• Solution:

� use "utility.sml";
open List;
val numZeros = length o (filter (curry op= 0));

13

Operator precedence

• ML has the following descending levels of precedence:

� infix 7 * / mod div

� infix 6 + - ^

� infixr 5 :: @

� infix 4 = <> > >= < <=

� infix 3 := o

� infix 0 before

• When defining an operator, you can set its precedence:

infix 5 --;

14

Subtleties of precedence

• Binding of a function to a parameter has high precedence

� fun f x::xs = [] is interpreted as

fun (f x)::xs = []

� fun f(x::xs) = [] is better!

� map curry op+ 1 is interpreted as

(map curry) op+ 1

� map (curry op+ 2) is better!

� Adding parentheses is always okay to remove ambiguity.

15

Curry / higher-order exercise

• Recall our past exercise about Pascal's triangle:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

• Modify our function triangle to use curried functions,

the "real" map function, composition, etc.

� triangle 6 produces [[1], [1,1], [1,2,1],
[1,3,3,1], [1,4,6,4,1], [1,5,10,10,5,1]]

16

triangle curry solution

(* returns n choose k *)
fun combin n k =

if k = 0 orelse k = n then 1
else if k = 1 then n
else combin (n-1) (k-1) + combin (n-1) k;

(* Returns the first n levels of Pascal's triangle.
This version uses currying, real map,etc.*)

fun triangle n =
map (fn(r) => map (combin r) (1--r)) (1--n);

