
CSE 341

Lecture 11 b

closures; scoping rules

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

What's the result? (1)

val x = 3;
fun f(n) = x * n;
f(8);
val x = 5;
f(8);

• The function produces 24 for both calls.

� x's value of 3 is bound to f when f is defined.

� A new definition of x later in the code doesn't affect f.

3

What's the result? (2)

fun f(g) =
let val x = 3
in g(2)
end;

val x = 4;
fun h(y) = x + y;
f(h);

• The call f(h) produces 6.

� x's value of 4 is bound to h when h is defined.

� A "later" definition of x in the let doesn't affect h.

4

What's the result? (3)

fun multiplier(a) =
let fun f(b) = a * b
in f
end;

val m1 = multiplier(2);
val m2 = multiplier(5);
m1(10);
m2(7);

• m1(10) produces 20, and m2(7) produces 35.

� On each call of multiplier, that call's a value becomes

bound to inner function f as it is defined and returned.

� A later call to multiplier doesn't affect the past one's a.

5

The anatomy of functions

• A function really consists of a pair of things:

� some code to be evaluated

� an environment of variables and symbols used by the code

• This pair is also called a function closure. *

� Storing a function's environment with its code allows us to

write some powerful code to utilize that environment.

* Many folks mistakenly refer to anonymous functions, or first-class

functions, as "closures." This is a misuse of the term.

6

Closure

• closure: A first-class function that binds to free variables

that are defined in its execution environment.

• free variable: A variable referred to by a function that is

not one of its parameters or local variables.

� bound variable: A free variable that is given a fixed value

when "closed over" by a function's environment.

• A closure occurs when a function is defined and it

attaches itself to the free variables from the surrounding

environment to "close" up those stray references.

7

Closure example (1)

val x = 3;
fun f(n) = x * n;
f(8);
val x = 5;
f(8);

3x

valuesymbol

f's environment

parent env.

(to be set on call)n

5x

valuesymbol

global environment

...system libraries...

3x

(f's code/env.)f

8

What's the result? (3)

fun multiplier(a) =
let fun f(b) = a * b
in f
end;

val m1 = multiplier(2);
val m2 = multiplier(5);
m1(10);
m2(7);

(m1's code/env.)m1

valuesymbol

global environment

...system libraries...

(multiplier's ...)multiplier

(m2's code/env.)m2

valuesymbol

multiplier's environment

parent

(set on call)a

(f's code/env.)f

2a

valuesymbol

f's environment (m1)

parent

(set on call)b

5a

valuesymbol

f's environment (m2)

parent

(set on call)b

9

Scope

• scope: The enclosing context where values and

expressions are associated.

� essentially, the visibility of various identifiers in a program

• lexical scope: Scopes are nested via language syntax; a

name refers to the most local definition of that symbol.

� most modern languages (Java, C, ML, Scheme, JavaScript)

• dynamic scope: A name always refers to the most

recently executed definition of that symbol.

� Perl, Bash shell, Common Lisp (optionally), APL, Snobol

10

Lexical scope in Java

• In Java, every block ({}) defines a scope.

public class Scope {

public static int x = 10;

public static void main(String[] args) {

System.out.println(x);

if (x > 0) {

int x = 20;

System.out.println(x);

}

int x = 30;

System.out.println(x);

}

}

11

Lexical scope in ML

• In ML, a function, let expression, etc. defines a scope.

val y = 2;

fun f (n) =

let

val x =

let

val n = 3

in 10 * (n + y)

end

val y = 100 * n

in

x + y + n

end;

f(6);

12

Dynamic scope in Java (what if?)

• What if Java used dynamic scoping?
public class Scope2 {

private static int x = 3;

public static void one() {
x *= 2;
System.out.println(x); // could be any x!

}

public static void two() {
int x = 5;
one();
System.out.println(x);

}

public static void main(String[] args) {
one(); // program output:
two(); // 6
int x = 2; // 10
one(); // 10
System.out.println(x); // 4

} // 4
}

13

Lexical vs. dynamic scope

• benefits of lexical scoping:

� functions can be reasoned about (defined, type-checked,

etc.) where defined

� function's meaning not related to choice of variable names

� "Closing over" local variables creates "private" data;

function definer knows function users cannot affect it

• benefits of dynamic scoping:

� easier for compiler/interpreter author to implement!

� useful for some domain-specific kinds of code (graphics,

etc.); mixes the benefits of parameters with ease of globals

14

Closures in Java

• functions (methods) are not first-class citizens in Java

• but you can dynamically create an inner or local class

� this class will exist inside of another (outer) class

� it will have access to the outer class's local environment at

the time of its creation

15

Java closure example

public class Outer { // note: n must be declared final
public static Object foo(final int n) {

class Inner {
public String toString() {

return "(My n is " + n + ")";
}

}

return new Inner();
}

public static void main(String[] args) {
Object o1 = foo(42);
Object o2 = foo(17);
System.out.println(o1 + " " + o2);

} // (My n is 42) (My n is 17)
}

16

Anonymous inner classes

public class Outer {
public static Object foo(final int n) {

return new Object() {
public String toString() {

return "(My n is " + n + ")";
}

};
}

public static void main(String[] args) {
Object o1 = foo(42);
Object o2 = foo(17);
System.out.println(o1 + " " + o2);

} // (My n is 42) (My n is 17)
}

17

Closure idioms

• You can use closures to:

� create similar functions

� combine functions

� pass functions with private data to iterators (map, fold, ...)

� provide an ADT

� partially apply functions ("currying")

� as a callback without the "wrong side" specifying the

environment

