
CSE 341

Lecture 15

introduction to Scheme

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Looking back: Language timeline

CLP(R)Prologlogical

Python,

Ruby, PHP,

JavaScript

PerlBASICscripting

C#JavaAda, C++Pascal, C,

Smalltalk

Algolimperative/

procedural

F#HaskellErlangML, SchemeLispfunctional

VBSQLDBMSesCobolbusiness

MatlabFortranscientific

2000s1990s1980s1970s1960scategory

3

History of LISP

• LISP ("List Processing"): The first functional language.

� made: 1958 by John McCarthy, MIT (Turing Award winner)

– godfather of AI (coined the term "AI")

� developed as a math notation for proofs about programs

� pioneered idea of a program as a collection of functions

� became language of choice for AI programming

• Fortran (procedural, 1957), LISP (functional, 1958)

� languages created at roughly the same time

� battled for dominance of coder mindshare

� Fortran "won" because LISP was slow, less conventional

4

John McCarthy, creator of LISP

5

LISP key features

• a functional, dynamically typed, type-safe, language

� anonymous functions, closures, no return statement, etc.

� less compile-time checking (run-time checking instead)

� accepts more programs that ML would reject

• fully parenthesized syntax ("s-expressions")

� Example:

(factorial (+ 2 3))

• everything is a list in LISP (even language syntax)

� allows us to manipulate code as data (powerful)

� first LISP compiler was written in LISP

6

LISP advanced features

• LISP was extremely advanced for its day (and remains so):

� recursive, first-class functions ("procedures")

� dynamic typing

� powerful macro system

� ability to extend the language syntax, create dialects

� programs as data

� garbage collection

� continuations: capturing a program in mid-execution

• It took other languages 20-30 years to get these features.

7

LISP "today"

• current dialects of LISP in use:

� Common LISP (1984) - unified many older dialects

� Scheme (1975) - minimalist dialect w/ procedural features

� Clojure (2007) - LISP dialect that runs on Java JVM

• well-known software written in LISP:

� Netscape Navigator, v1-3

� Emacs text editor

� movies (Final Fantasy), games (Jak and Dexter)

� web sites, e.g. reddit

� Paul Graham (tech essayist, Hackers and Painters)

8

Scheme

• Scheme: Popular dialect of LISP.

� made in 1975 by Guy Steele, Gerald Sussman of MIT

� Abelson and Sussman's influential textbook:

– Structure and Interpretation of Computer Programs (SICP)
http://mitpress.mit.edu/sicp/

• innovative differences from other LISP dialects

� minimalist design (50 page spec), derived from λ-calculus

� the first LISP to use lexical scoping and block structure

� lang. spec forces implementers to optimize tail recursion

� lazy evaluation: values are computed only as needed

� first-class continuations (captures of computation state)

9

TeachScheme!

• 1995 movement by Matthias Felleisen of Rice's PLT group

� goal: create pedagogic materials for students and teachers

to educate them about programming and Scheme

� push for use of Scheme and functional langs. in intro CS

� radical yahoos who take themselves too seriously :-)

• major TeachScheme! developments

� DrScheme editor, for use in education

� How to Design Programs, influential Scheme intro textbook

http://www.teach-scheme.org/

http://www.htdp.org/

10

DrScheme

• DrScheme: an educational editor for Scheme programs

� built-in interpreter window

– Alt+P, Alt+N = history

� syntax highlighting

� graphical debugger

� multiple "language levels"

– (set ours to "Pretty Big")

• similar to DrJava editor for Java programs

(you can also use a text editor and command-line Scheme)

11

Scheme data types

• numbers

� integers: 42 -15

� rational numbers: 1/3 -3/5

� real numbers: 3.14 .75 2.1e6

� complex/imaginary: 3+2i 0+4i

• text

� strings: "\"Hello\", I said!"

� characters: #\X #\q

• boolean logic: #t #f

• lists and pairs: (a b c) '(1 2 3) (a . b)

• symbols: x hello R2D2 u+me

12

Basic arithmetic procedures

(procedure arg1 arg2 ... argN)

• in Scheme, almost every non-atomic value is a procedure

� even basic arithmetic must be performed in () prefix form

• Examples:

� (+ 2 3) → 5 ; 2 + 3

� (- 9 (+ 3 4)) → 2 ; 9 - (3 + 4)

� (* 6 -7) → -42 ; 6 * -7

� (/ 32 6) → 16/3 ; 32/6 (rational)

� (/ 32.0 6) → 5.333... ; real number

� (- (/ 32 6) (/ 1 3)) → 5 ; 32/6 - 1/3 (int)

13

More arithmetic procedures

+ - *

quotient remainder modulo

max min abs

numerator denominator gcd

lcm floor ceiling

truncate round rationalize

expt

• Java's int / and % are quotient and modulo

� remainder is like modulo but does negatives differently

• expt is exponentiation (pow)

14

Defining variables

(define name expression)

• Examples:

� (define x 3) ; int x = 5;

� (define y (+ 2 x)) ; int y = 2 + x;

� (define z (max y 7 3)) ; int z = Math.max..

• Unlike ML, in Scheme all top-level bindings are mutable!

(set! name expression)

� (set! x 5)

– (Legal, but changing bound values is discouraged. Bad style.)

15

Procedures (functions)

(define (name param1 param2 ... paramN)

(expression))

• defines a procedure that accepts the given parameters

and uses them to evaluate/return the given expression

> (define (square x) (* x x))

> (square 7)

49

� in Scheme, all procedures are in curried form

16

Basic logic

• #t, #f ; atoms for true/false

• <, <=, >, >=, = operators (as procedures); equal?

� (< 3 7) ; 3 < 7

� (>= 10 (* 2 x)) ; 10 >= 2 * x

• and, or, not (also procedure-like; accept >=2 args) *

> (or (not (< 3 7)) (>= 10 5) (= 9 6))

#t

(technically and/or are not procedures because they don't always
evaluate all of their arguments)

17

The if expression

(if test trueExpr falseExpr)

• Examples:

> (define x 10)

> (if (< x 3) 10 25)

25

> (if (> x 6) (* 2 4) (+ 1 2))

8

> (if (> 0 x) 42 (if (< x 100) 999 777)) ; nested if

999

18

The cond expression

(cond (test1 expr1) (test2 expr2)

... (testN exprN))

• set of tests to try in order until one passes (nested if/else)
> (cond ((< x 0) "negative")

((= x 0) "zero")

((> x 0) "positive"))

"positive"

• parentheses can be []; optional else clause at end:
> (cond [(< x 0) "negative"]

[(= x 0) "zero"]

[else "positive"])

"positive"

19

Testing for equality

• (eq? expr1 expr2) ; reference/ptr comparison

• (eqv? expr1 expr2) ; compares values/numbers

• (= expr1 expr2) ; like eqv; numbers only

• (equal? expr1 expr2) ; deep equality test

� (eq? 2.0 2.0) is #f, but

(= 2.0 2.0) and (eqv? 2.0 2.0) are #t

� (eqv? '(1 2 3) '(1 2 3)) is #f, but

(equal? '(1 2 3) '(1 2 3)) is #t

� Scheme separates these because of different speed/cost

20

Scheme exercise

• Define a procedure factorial that accepts an integer

parameter n and computes n!, or 1*2*3*...*(n-1)*n .

� (factorial 5) should evaluate to 5*4*3*2*1, or 120

• solution:

(define (factorial n)

(if (= n 0)

1

(* n (factorial (- n 1)))))

21

List of Scheme keywords

=> do or

and else quasiquote

begin if quote

case lambda set!

cond let unquote

define let* unquote-splicing

delay letrec

• Scheme is a small language; it has few reserved words

