
CSE 341

Lecture 18

symbolic data; code as data;

writing a REPL loop; symbolic differentiation

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Symbols and evaluation

• Scheme has a type called symbol

� a symbol is very similar to a one-token immutable string

� a symbol's intrinsic value is simply its name

– but it can be connected to / associated with other values

• all Scheme code is treated as lists of symbols

� the list (+ 4 7) is a list containing 3 symbols: +, 4, and 7

• the Scheme interpreter reads and evaluates symbols

� symbols are keys in (name, value) pairs in the environment

3

Defining and using symbols

(quote name)
'name ; shorthand

� (define name 'Suzy)

• a list can contain symbols:

� (define mylist (list 'a 'b 42 'c 17 'd))

• precede the list with ' to make all its elements symbols:

� (define mylist2 '(a b c d))

4

Symbol procedures

(symbol? expr) ; type test
(symbol=? sym1 sym2) ; eq? also works
(symbol->string sym)
(string->symbol str)

• symbols are interned; two identical symbols are equal:

(define s1 'Hello)
(define s2 'Hello)
(eq? s1 s2) → #t

5

Symbols vs. strings

• Schemers tend to favor using symbols over strings

� symbols are atomic, while a string is an array of characters

� symbols are immutable, while Scheme strings are not

� Scheme's syntax often makes manipulating symbols easier

• much of the language syntax uses symbols:

� (define symbol expr)

� (let ((symbol expr) ...) expr)

� (symbol expr ... expr) ; procedure call

– most parts of the languages evaluate symbols; some don't

6

Symbol / value mappings

• the Scheme interpreter implements its environment as a

table of mappings between symbols and values

(define x 5)
(define (square n) (* n n))
(define f square)
(define gpa 3.98)

• when code runs, it looks

up values for each symbol:

> (+ x 2)

7

> (square 4)

16

<procedure>f

3.98gpa

<procedure>square

5x

valuesymbol

global environment

...system libraries...

7

How Scheme evaluates

• When it sees a list, Scheme evaluates each element, then

applies the first (procedure) to the rest (params).

(+ 4 (* 2 3))

(+ 4 (* 2 3))
^ ^ ^ ^
| | | |
| | | +--list: evaluate! → ... 6
| | +--number: evaluate! → 4
| +--symbol: evaluate! → <procedure +>
+--list

� What's the difference between symbol + and procedure +?

8

Quoted lists

'(expr expr ... expr)

• one way of thinking of ' is that it "turns off the

interpreter" for the duration of that list

� i.e., it creates the list without evaluating its elements

� a list of symbols rather than a list of their assoc. values

• this allows us to store Scheme code as data
> (define mycode '(+ 2 3))

9

Code as data

• Java and ML don't really have a way to do the following:

String code = "System.out.println(2 + 3);"
execute(code);

– what would have to be done for this to work?

• manipulating code is much easier in a dynamic language

� syntax/type checking are being done at runtime already

� Scheme is looser about types, what is defined, etc.

10

Manually evaluating code

(eval code)

• tells interpreter to evaluate a symbol or list of symbols

� Example:

> (define code '(+ 2 3))

> code

(+ 2 3)

> (eval code)

5

11

Evaluating symbols

• Symbols can be evaluated as identifiers, but they become

references to identifiers if you interpret them:

> (define sym 'abc)

> sym

abc

> (eval sym)

reference to undefined identifier: abc

> (define abc 123)

> (eval sym)

123

12

Various uses of quotes

• What's the difference between these? Which are errors?

� (2 + 2)

� (2 '+ 2)

� '(2 + 2)

� (list 2 + 2)

� (list 2 '+ 2)

� ('list '2 '+ '2)

� (list list 'list "list" '(list))

13

References to procedures

• What is the difference between these two?

> (define f +) ; what type is f?
> (define g '+) ; what type is g?
> (define h '(+ 2 3)) ; what type is h?

• What is the result of each expression? Which ones fail?

> (f 2 3)
> (eval f)
> (g 2 3)
> (eval g)
> ((eval g) 2 3)
> (eval h)

14

Writing a REPL loop

• REPL ("read-eval-print") loop: Reads a statement or

expression at a time, runs it, and shows the result.

� examples: The Scheme and ML interpreters

• Exercise: Let's write our own crude Scheme REPL loop as

a procedure named repl ...

– loop while not done:
– read command from user.

– evaluate result of command.

– print result on screen.

15

Console I/O procedures

(display expr) ; output expr or list to console
(newline) ; output a line break (\n)
(read) ; read token of input as a symbol

• note that read returns the symbol it read, not a string

> (define x (read))

hello how are you
> x

hello

> (symbol? x)

#t

16

REPL solution

(define (repl)
(display "expression? ")
(let ((exp (read))) ; read

(display exp)
(display " --> ")
(display (eval exp)) ; eval / print
(newline)
(repl))) ; loop

17

The begin expression

(begin expr1 expr2 ... exprN)

• evaluates the expressions in order, ignoring the

result of all but the last; result of exprN is the

overall result

• useful for printing data and then returning a result

> (define x 3)

> (begin (display "x=") (display x)

(newline)

(* x x))

x=3

18

Differentiation (SICP 2.3.2)

• Suppose we're computing derivatives of math functions.

� e.g. if f(x) = ax2 + bx + c (for constants a,b,c),

df/dx = 2ax + b

� suppose functions can

consist of:

– constants

– variables (e.g. x)

– addition with +

– multiplication with *

� we use the rules at right:

()

()

dx

du
v

dx

dv
u

dx

uvd

dx

dv

dx

du

dx

vud

dx

dx

dx

dc

+=

+=
+

=

=

1

0

19

A grammar for our functions

<func> ::= NUMBER | VARIABLE | <list>

<list> ::= "(" <term> ")"

<term> ::= ("*" | "+") <func> <func>

• Grammar is specified in Extended Backus-Naur Format ("EBNF").

� A grammar defines the syntax rules of a language.

� The grammar maps from <non-terminals> to TERMINALs.

20

Derivative exercise

• Define a procedure deriv that takes a mathematical

function (represented as a list of symbols) and a variable

(a symbol) and differentiates the function.

; d/dx (x + 3) -> 1
deriv('(+ x 3) 'x) → 1

; d/dx (5x) -> 5
deriv('(* x 5) 'x) → x

; d/dz (z2 + 5z) -> 2z + 5
deriv('(+ (* z z) (* 5 z)) 'z) → (+ (* 2 z) 5)

; d/dx (ax2 + bx + c) -> 2ax + b
deriv('(+ (+ (* a (* x x)) (* b x) c)), 'x) →

(+ (* (2 (* a x)) b))

21

Pseudo-code

• Use the EBNF grammar to guide the creation of the code.

Pseudo-code:

� function deriv(func, variable):

– is func a number? if so, ...

– is func a variable? if so, ...

– is func a list?

– starting with + ? if so, ...

– starting with * ? if so, ...

– ...

22

Checking types

(type? expr)

• tests whether the expression/var is of the given type

� (integer? 42) → #t

� (rational? 3/4) → #t

� (real? 42.4) → #t

� (number? 42) → #t

� (procedure? +) → #t

� (string? "hi") → #t

� (symbol? 'a) → #t

� (list? '(1 2 3)) → #t

� (pair? (42 . 17)) → #t

23

Helper procedures

• We suggest writing the following helper code:

� (sum? func) - returns #t if func represents a sum in

our grammar, such as '(+ (* 2 3) 4)

� (product? func) - returns #t if func represents a

product in our grammar, such as '(* 3 (+ 2 5))

� (make-sum func1 func2) - takes the two operands of

a + sum and returns their sum expression

– (make-sum 4 '(+ 2 3)) returns (+ 4 (+ 2 3))

� (make-product func1 func2) - takes the two

operands of a + product, returns the product expression

– (make-product '(+ 2 3) 4) returns (* (+ 2 3) 4)

24

Improved derivative exercise

• Make the deriv function simplify various patterns:

� a+0 → a

� a*1 → a

� var+var → 2*var

� k*0 → 0

� k*1 → k

• Make the function produce an error message when given

an invalid function that doesn't match the grammar.

25

The error procedure

(error [symbol] [string])

• raises an exception with the given error string/symbol

> (error "kaboom!")

kaboom!

> (error 'abc "oh noez!")

abc: oh noez!

26

Quasi-quotes

(quasiquote expr expr ... expr)
`(expr expr expr)

• quasi-quotes are used to stop evaluation of most of a list

� useful to mostly not evaluate a given expression, so that

you don't have to individually quote lots of the pieces

> `(1 2 3)

(1 2 3)

> `(* 2 (+ 1 3))

(* 2 (+ 1 3))

27

Unquoting

(unquote expr)
,expr

(unquote-splicing list)
,@expr

• within quasi-quotes, , and ,@ cause a particular sub-

expression or list to be evaluated (the rest isn't evaled)

> `(1 2 ,(+ 3 4) 5 ,@(list 6 7 8))

(1 2 7 5 (6 7 8))

28

Quasi-quotes versus quotes

• quotes are useful when you want to stop evaluation of an

entire list, or stop evaluation of just one / a few items:

> '(1 2 3 4 5 6) ; good
> (list 1 2 3 4 (+ 2 3) 6) ; good
> (list 'a 'b 'c 'd (+ 2 3) 'e 'f) ; bad!

• quasi-quotes are useful when you want to stop

evaluation of most of the items in a list, except for a few

> `(a b c d ,(+ 2 3) e f) ; good

