
CSE 341

Lecture 19

parsing / Homework 7

slides created by Marty Stepp

http://www.cs.washington.edu/341/



2

Looking ahead

• We will complete a 2-part assignment related to 

analyzing and interpreting BASIC source code.

� HW7: BASIC expression parser

� HW8: BASIC interpreter

• To complete this assignment, it is helpful to have some 

background about how compilers and interpreters work.

� HW8 will be an interpreter that performs REPL (read, eval, 

print) on BASIC source code.

� HW7 is a parser that reads BASIC math expressions.

– HW8 will make use of HW7's code to eval expressions.



3

How does a compiler work?

• A typical compiler or interpreter consists of many steps:

1. lexical analysis: break apart the code into tokens

2. syntax analysis (parsing): examine sequences of tokens 
based on the language's syntax

3. semantic analysis: reason about
the meaning of the token sequences
(particularly pertaining to types)

4. code generation: generate 
executable code in some format
(native, bytecode, etc.)

5. optimization (optional): improve
the generated code



4

1. Lexical analysis (tokenizing)

• Suppose you are writing a Java interpreter or compiler.

� The source code you want to read contains this:

for (int i=2*3/4 + 2+7; i*x <= 3.7 * y; i = i*3+7)

� The first task is to split apart the input into tokens based on 

the language's token syntax and delimiters:

)7+3*i=i;y*3.7<=x*

i;7+2+4/3*2=iint(for



5

A tokenizer in Scheme

• If our Java interpreter is written in Scheme, we convert:

for (int i=2*3/4 + 2+7; i*x <= 3.7 * y; i = i*3+7)

� into the following Scheme list:

(for ( int i = 2 * 3 / 4 + 2 + 7 ; i * x <= 3.7 * y ; i = 

i * 3 + 7 ) )

– if typed in as Scheme source, it would have been:

(list 'for '( 'int 'i '= 2 '* 3 '/ 4 '+ 2 '+ 7 '; 'i '* 'x 

'<= 3.7 '* 'y '; 'i '= 'i '* 3 '+ 7 ') )

� ( and ) are hard to process as symbols; so we'll use:

(for lparen int i = 2 * 3 / 4 + 2 + 7 ; i * x <= 3.7 * y 

; i = i * 3 + 7 rparen )



6

2. Syntax analysis (parsing)

• Now that we have a list of tokens, we will walk across 

that list to see how the tokens relate to each other.

� Example: Suppose we've processed the source code up to:

(for lparen int i = 2 * 3 / 4 + 2 + 7 ; i * x <= 3.7 * y 

^

; i = i * 3 + 7 rparen )

� From parser's perspective, the list of upcoming tokens is:

2 * 3 / 4 + 2 + 7 ; i * x <= 3.7 * y ; i = ...

^



7

Parsing expressions

• The list of upcoming tokens contains expressions:
2 * 3 / 4 + 2 + 7 ; i * x <= 3.7 * y ; i = ...

• Parsers process the code they read:

� a compiler builds a syntax tree

� an interpreter evaluates the code

10 ; i * x <= 3.7 * y ; i = ...



8

Grammars

• <test> ::= <expr> <relop> <expr>

• <relop> ::= "<" | ">" | "<=" | ">=" | "=" | "<>"

• <expr> ::= <term> {("+" | "-") <term>}

• <term> ::= <element> {("*" | "/") <element>}

• <element> ::= <factor> {"^" <factor>}

• <factor> ::= <number> | ("+" | "-") <factor> | "(" <expr> ")"
| <f> "(" <expr> ")"

• <f> ::= SIN | COS | TAN | ATN | EXP | ABS | LOG | SQR | RND | INT

• grammar: set of structural rules for a language

� often described in terms of themselves (recursive)

– <non-terminal>; TERMINAL; "literal token";

– {repeated 0--* times}; or: (a | b)



9

Procedures you'll write (1)

• parse-factor

� <factor> ::= <number> | ("+" | "-") <factor> | "(" <expr> ")"
| <f> "(" <expr> ")"

> (parse-factor '(- 7.9 3.4 * 7.2))

(-7.9 3.4 * 7.2)

> (parse-factor '(lparen 7.3 - 3.4 rparen + 3.4))

(3.9 + 3.4)

> (parse-factor '(SQR lparen 12 + 3 * 6 - 5 rparen))

(5)

> (parse-factor '(- lparen 2 + 2 rparen * 4.5))

(-4 * 4.5)



10

Procedures you'll write (2)

• parse-element

� <element> ::= <factor> {"^" <factor>}

> (parse-element '(2 ^ 2 ^ 3 THEN 450))

(64 THEN 450)

> (parse-element '(2 ^ 2 ^ -3 THEN 450))

(0.015625 THEN 450

> (parse-element '(2.3 ^ 4.5 * 7.3))

(42.43998894277659 * 7.3)

> (parse-element '(7.4 + 2.3))

(7.4 + 2.3)



11

The grammar is the code!

• <factor> ::= <number> | ("+" | "-") <factor> | "(" <expr> ")"
| <f> "(" <expr> ")"

(define (parse-factor lst)

; 1) if I see a number, then ...

; 2) if I see a + or -, then ...

; 3) if I see a (,      then ...

; 4) else it is an <f>, so   ...

• How do you know which of the four cases you are in?



12

Recall: Checking types

(type? expr)

• tests whether the expression/var is of the given type

� (integer? 42) → #t

� (rational? 3/4) → #t

� (real? 42.4) → #t

� (number? 42) → #t

� (procedure? +) → #t

� (string? "hi") → #t

� (symbol? 'a) → #t

� (list? '(1 2 3)) → #t

� (pair? (42 . 17)) → #t



13

Exact vs. inexact numbers

• You'll encounter problems with Scheme's rational type:

� Scheme thinks 3/2 is 1 1/2 (a rational)

� the interpreter wants 3/2 to be 1.5 (a real)

• Scheme differentiates exact numbers (integers, fractions) 

from inexact numbers (real numbers).

� (A complex number can be exact or inexact.)

� Round-off errors can occur only with inexact numbers.



14

Managing exact/inexact numbers

• exact?, inexact? procedures see if a number is exact:

� (exact? 42) → #t

� (inexact? 3.25) → #t

• Scheme has procedures to convert between the two:

� (exact->inexact 13/4) → 3.25

� (inexact->exact 3.25) → 3 1/4
– (May want floor, ceiling, truncate, ... in some cases.)

(In general, conversion procedure names are type1->type2 .)



15

Parsing math functions

• <f> ::= SIN | COS | TAN | ATN | EXP | ABS | LOG | SQR | RND | INT

• grammar has tokens representing various math functions

� must map from these to equivalent Scheme procedures

� could use a giant nested if or cond expression, but...

(define functions

'((SIN . sin)  (COS . cos) (TAN . tan) (ATN . atan)

(EXP . exp)  (ABS . abs) (LOG . log) (SQR . sqrt)

(RND . rand) (INT . trunc)))



16

Associative lists (maps) with pairs

• Recall: a map associates keys with values

� can retrieve a value later by supplying the key

• in Scheme, a map is stored as a list of key/value pairs:

(define phonebook (list '(Marty 6852181) 

'(Stuart 6859138) '(Jenny 8675309)))

• look things up in a map using the assoc procedure:

> (assoc 'Stuart phonebook)

(Stuart 6859138)

> (cdr (assoc 'Jenny phonebook))  ; get value

8675309


