
CSc 372, Fall 2006 Ruby, Slide 1
W. H. Mitchell (whm@msweng.com)

Introduction

What is Ruby?

Experimenting with Ruby using irb

Executing Ruby code in a file

Everything is an object

Variables have no type

Ruby's philosophy is often "Why not?"

CSc 372, Fall 2006 Ruby, Slide 2
W. H. Mitchell (whm@msweng.com)

What is Ruby?

"A dynamic, open source programming language with a focus on simplicity and productivity.
It has an elegant syntax that is natural to read and easy to write." — ruby-lang.org

Ruby is commonly described as an "object-oriented scripting language".

Ruby was invented by Yukihiro Matsumoto ("Matz"), a "Japanese amateur language
designer" (his own words). Here is a second-hand summary of a posting by Matz:

"Well, Ruby was born on February 24, 1993. I was talking with my colleague about the
possibility of an object-oriented scripting language. I knew Perl (Perl4, not Perl5), but I
didn't like it really, because it had smell of toy language (it still has). The
object-oriented scripting language seemed very promising."

 http://www.rubygarden.org/faq/entry/show/5

Another quote from Matz:

"I believe that the purpose of life is, at least in part, to be happy. Based on this belief,
Ruby is designed to make programming not only easy but also fun. It allows you to
concentrate on the creative side of programming, with less stress. If you don’t believe
me, read this book and try Ruby. I’m sure you’ll find out for yourself."

CSc 372, Fall 2006 Ruby, Slide 3
W. H. Mitchell (whm@msweng.com)

What is Ruby?

Ruby is a language in flux.

• Version 1.8.4 is installed on lectura. Version 1.9 is available.

• There is no written standard for Ruby. The language is effectively defined by
MRI—Matz' Ruby Implementation.

There is good on-line documentation:

• The first edition of our text, the "pickaxe book", is available for free:
www.ruby-doc.org/docs/ProgrammingRuby

• Documentation for the core classes is at www.ruby-doc.org/core.

• The above and more is collected at www.ruby-lang.org/en/documentation.

• Chapter 22 of the text is a fairly concise language reference for Ruby. It will soon be
available through the UA library as an E-Reserve. Watch for a link on our website.

CSc 372, Fall 2006 Ruby, Slide 4
W. H. Mitchell (whm@msweng.com)

What is Ruby?

Ruby is getting a lot of attention and press at the moment. Two popular topics:

• Ruby on Rails, a web application framework.

• JRuby, a 100% pure-Java implementation of Ruby. With JRuby, among other things,
you can use Java classes in Ruby programs. (jruby.codehaus.org)

CSc 372, Fall 2006 Ruby, Slide 5
W. H. Mitchell (whm@msweng.com)

Experimenting with Ruby using irb

There are two common ways to execute Ruby code: (1) Put it in file and execute the file with
the "ruby" command. (2) Use irb, the Interactive Ruby Shell. We'll start with irb.

NOTE: The examples on these slides assume a particular configuration for irb, so before you
run irb the first time, copy our .irbrc file into your home directory on lectura:

cp /home/cs372/fall06/ruby/.irbrc ~

irb's default prompt contains a little more information than we need at the moment, so we'll
ask for the "simple" prompt:

% irb --prompt simple
>>

To exit irb, use control-D.

CSc 372, Fall 2006 Ruby, Slide 6
W. H. Mitchell (whm@msweng.com)

irb, continued

irb evaluates expressions as are they typed.

>> 1 + 2
=> 3

>> "testing" + "123" (NOTE: No trailing semicolon!)
=> "testing123"

One of the definitions in our .irbrc allows the last result to be referenced with "it":

>> it
=> "testing123"

>> it+it
=> "testing123testing123"

If an expression is definitely incomplete, irb displays an alternate prompt:

>> 1.23 +
?> 1e5
=> 100001.23

CSc 372, Fall 2006 Ruby, Slide 7
W. H. Mitchell (whm@msweng.com)

Executing Ruby code in a file

The ruby command can be used to execute Ruby source code contained in a file.

By convention, Ruby files have the suffix .rb.

Here is "Hello" in Ruby:

% cat hello.rb
puts "Hello, world!"

% ruby hello.rb
Hello, world!
%

Note that the code does not need to be enclosed in a method—"top level" expressions are run
as encountered.

CSc 372, Fall 2006 Ruby, Slide 8
W. H. Mitchell (whm@msweng.com)

Executing Ruby code in a file, continued

Alternatively, code can be placed in a method that is invoked by an expression at the top
level:

% cat hello2.rb
def say_hello
 puts "Hello, world!"
end

say_hello

% ruby hello2.rb
Hello, world!
%

The definition of say_hello must precede the call.

We'll see later that Ruby is somewhat sensitive to newlines.

CSc 372, Fall 2006 Ruby, Slide 9
W. H. Mitchell (whm@msweng.com)

A line-numbering program

Here is a program that reads lines from standard input and writes them, with a line number, to
standard output:

% cat numlines.rb
line_num = 1

while line = gets
 printf("%3d: %s", line_num, line)
 line_num += 1 # Ruby does not have ++ and --
end

Execution:

% ruby numlines.rb < hello2.rb
 1: def say_hello
 2: puts "Hello, world!"
 3: end
 4:
 5: say_hello

Problem: Write a program that reads lines from standard input and writes them in reverse
order to standard output. Use only the Ruby you've already seen.

CSc 372, Fall 2006 Ruby, Slide 10
W. H. Mitchell (whm@msweng.com)

Everything is an object

In Ruby, every value is an object.

Methods can be invoked using the form value.method(parameters...).

>> "testing".index("i") # Where's the first "i"?
=> 4

>> "testing".count("t") # How many times does "t" appear?
=> 2

>> "testing".slice(1,3)
=> "est"

>> "testing".length()
=> 7

Repeat: In Ruby, every value is an object.

What are some values in Java that are not objects?

CSc 372, Fall 2006 Ruby, Slide 11
W. H. Mitchell (whm@msweng.com)

Everything is an object, continued

Parentheses can be omitted from an argument list:

>> "testing".count "aeiou"
=> 2

>> "testing".slice 1,3
=> "est"

>> puts "number",3
number
3
=> nil

>> printf "sum = %d, product = %d\n", 3 + 4, 3 * 4
sum = 7, product = 12
=> nil

If no parameters are required, the parameter list can be omitted.

>> "testing".length
=> 7

CSc 372, Fall 2006 Ruby, Slide 12
W. H. Mitchell (whm@msweng.com)

Everything is an object, continued

Of course, "everything" includes numbers:

>> 7.class
=> Fixnum

>> 1.2.class
=> Float

>> (3-4).abs
=> 1

>> 17**50
=> 33300140732146818380750772381422989832214186835186851059977249

>> it.succ
=> 33300140732146818380750772381422989832214186835186851059977250

>> it.class
=> Bignum

CSc 372, Fall 2006 Ruby, Slide 13
W. H. Mitchell (whm@msweng.com)

Everything is an object, continued

The TAB key can be used to show completions:

>> 100.<TAB>
 100.nil?
100.__id__ 100.nonzero?
100.__send__ 100.numerator
100.abs 100.object_id
100.between? 100.power!
100.ceil 100.prec
100.chr 100.prec_f
100.class 100.prec_i
100.clone 100.private_methods
100.coerce 100.protected_methods
100.denominator 100.public_methods
100.display 100.quo
100.div 100.rdiv
100.divmod 100.remainder
100.downto 100.require

CSc 372, Fall 2006 Ruby, Slide 14
W. H. Mitchell (whm@msweng.com)

Variables have no type

In Java, variables are declared to have a type. When a program is compiled, the compiler
ensures that all operations are valid with respect to the types involved.

Variables in Ruby do not have a type. Instead, type is associated with values.

>> x = 10
=> 10

>> x = "ten"
=> "ten"

>> x.class
=> String

>> x = x.length
=> 3

Here's another way to think about this: Every variable can hold a reference to an object.
Because every value is an object, any variable can hold any value.

CSc 372, Fall 2006 Ruby, Slide 15
W. H. Mitchell (whm@msweng.com)

Variables have no type, continued

It is often said that Java uses static typing. Ruby, like most scripting languages, uses
dynamic typing.

Sometimes the term strong typing is used to characterize languages like Java and weak typing
is used to characterize languages like Ruby but those terms are now often debated and
perhaps best avoided.

Another way to describe a language's type-checking mechanism is based on when the
checking is done. Java uses compile-time type checking. Ruby uses run-time type checking.

Some statically-typed languages do some type checking at run-time. An example of a run-
time type error is Java's ClassCastException. C does absolutely no type-checking at run-
time. Ruby does absolutely no type-checking at compile-time.

What is ML's type-checking approach?

 http://www.artima.com/weblogs/viewpost.jsp?thread=46391

CSc 372, Fall 2006 Ruby, Slide 16
W. H. Mitchell (whm@msweng.com)

Variables have no type, continued

In a statically typed language a number of constraints can be checked at compile time. For
example, all of the following can be verified when a Java program is compiled:

x.getValue() x must have a getValue method

x * y x and y must be of compatible types for *

x.f(1,2,3) x.f must accept three integer parameters

In contrast, a typical compiler for a dynamically typed language will attempt to verify none
of the above when the code is compiled. If x doesn't have a getValue method, or x and y
can't be multiplied, or x.f requires three strings instead of three integers, there will be no
warning of that until the program is run.

For years it has been widely held in industry that static typing is a must for reliable systems
but a shift in thinking is underway. It is increasingly believed that good test coverage can
produce equally reliable software. 1

CSc 372, Fall 2006 Ruby, Slide 17
W. H. Mitchell (whm@msweng.com)

Ruby's philosophy is often "Why not?"

When designing a language, some designers ask, "Why should feature X be included?"
Some designers ask the opposite: "Why should feature X not be included?"

The instructor sees Ruby's philosophy as often being "Why not?" Here are some examples,
involving overloaded operators:

>> [1,2,3] + [4,5,6] + [] + [7]
=> [1, 2, 3, 4, 5, 6, 7]

>> "abc" * 5
=> "abcabcabcabcabc"

>> [1, 3, 15, 1, 2, 1, 3, 7] - [3, 2, 1]
=> [15, 7]

>> [10, 20, 30] * "..."
=> "10...20...30"

>> "decimal: %d, octal: %o, hex: %x" % [20, 20, 20]
=> "decimal: 20, octal: 24, hex: 14"

CSc 372, Fall 2006 Ruby, Slide 18
W. H. Mitchell (whm@msweng.com)

Building blocks

nil

Strings

Numbers

Conversions

Arrays

CSc 372, Fall 2006 Ruby, Slide 19
W. H. Mitchell (whm@msweng.com)

The value nil

nil is Ruby's "no value" value. The name nil references the only instance of the class
NilClass.

>> nil
=> nil

>> nil.class
=> NilClass

>> nil.object_id
=> 4

We'll see that Ruby uses nil in a variety of ways.

Speculate: Do uninitialized variables have the value nil?

CSc 372, Fall 2006 Ruby, Slide 20
W. H. Mitchell (whm@msweng.com)

Strings

Instances of Ruby's String class are used to represent character strings.

One way to specify a literal string is with double quotes. A variety of "escapes" are
recognized:

>> "formfeed \f, newline \n, return \r, tab \t"
=> "formfeed \f, newline \n, return \r, tab \t"

>> "\n\t\\".length
=> 3

> puts "newline >\n<, return (\r), tab >\t<"
newline >
), tab > <
=> nil

>> "Newlines: octal \012, hex \xa, control-j \cj"
=> "Newlines: octal \n, hex \n, control-j \n"

Page 321 in the text has a full list of escapes.

CSc 372, Fall 2006 Ruby, Slide 21
W. H. Mitchell (whm@msweng.com)

Strings, continued

A string literal may be constructed using apostrophes instead of double quotes. If so, only \'
and \\ are recognized as escapes:

>> '\n\t'.length Four characters: backslash, n, backslash, t
=> 4

>> '\'\\' Two characters: apostrophe, backslash
=> "'\\"

>> it.length
=> 2

A "here document" provides a third way to specify a string:

>> s = <<SomethingUnique
just
 testing
SomethingUnique
=> "just \n testing\n"

There's a fourth way, too: %q{ just testin' this } How many ways to do something is too
many? Which are syntactic sugar?

CSc 372, Fall 2006 Ruby, Slide 22
W. H. Mitchell (whm@msweng.com)

Strings, continued

The public_methods (and methods) method show the public methods that are available for
an object. Here are some of the methods for String:

>> "abc".public_methods.sort
=> ["%", "*", "+", "<", "<<", "<=", "<=>", "==", "===", "=~", ">", ">=", "[]", "[]=", "__id__",
"__send__", "all?", "any?", "between?", "capitalize", "capitalize!", "casecmp", "center",
"chomp", "chomp!", "chop", "chop!", "class", "clone", "collect", "concat", "count",
"crypt", "delete", "delete!", "detect", "display", "downcase", "downcase!", "dump",
"dup", "each", "each_byte", "each_line", "each_with_index", "empty?", "entries",
"eql?", "equal?", "extend", "find", "find_all", "freeze", "frozen?", "gem", "grep", "gsub",
"gsub!", "hash", "hex", "id", "include?", "index", "inject", "insert", "inspect",
"instance_eval", "instance_of?", "instance_variable_get", "instance_variable_set",
"instance_variables", "intern", "is_a?", "kind_of?", "length", "ljust", "lstrip", "lstrip!",
"map", "match", "max", "member?", "method", "methods","min", "next", "next!", "nil?",
"object_id", "oct", "partition", "private_methods", "protected_methods",
"public_methods", "reject", "replace", "require", "require_gem", "respond_to?",
"reverse", "reverse!", "rindex", "rjust", "rstrip", "rstrip!", "scan", "select", "send",
...

>> "abc".public_methods.length
=> 145

CSc 372, Fall 2006 Ruby, Slide 23
W. H. Mitchell (whm@msweng.com)

Strings, continued

Unlike Java, ML, and many other languages, strings in Ruby are mutable. If two variables
reference a string and the string is changed, the change is reflected by both variables:

>> x = "testing"
=> "testing"

>> y = x x and y now reference the same instance of String.
=> "testing"

>> x.upcase! Convention: If there are both applicative and imperative forms of a
method, the name of the imperative form ends with an exclamation.

=> "TESTING"

>> y
=> "TESTING"

In Java, if s1 and s2 are Strings an assignment such as s1 = s2 produces a shared reference
but it's never an issue because instances of String are immutable—no methods change a
String.

CSc 372, Fall 2006 Ruby, Slide 24
W. H. Mitchell (whm@msweng.com)

Strings, continued

The dup method produces a copy of a string.

>> y = x.dup
=> "TESTING"

>> y.downcase!
=> "testing"

>> y
=> "testing"

>> x
=> "TESTING"

Some objects that hold strings make a copy of the string when the string is added to the
object.

CSc 372, Fall 2006 Ruby, Slide 25
W. H. Mitchell (whm@msweng.com)

Strings, continued

Strings can be compared with a typical set of operators:

>> s1 = "apple"
=> "apple"

>> s2 = "testing"
=> "testing"

>> s1 == s2
=> false

>> s1 != s2
=> true

>> s1 < s2
=> true

>> s1 >= s2
=> false

CSc 372, Fall 2006 Ruby, Slide 26
W. H. Mitchell (whm@msweng.com)

Strings, continued

There is also a comparison operator. It produces -1, 0, or 1 depending on whether
the first operand is less than, equal to, or greater than the second operand.

>> "apple" <=> "testing"
=> -1

>> "testing" <=> "apple"
=> 1

>> "x" <=> "x"
=> 0

CSc 372, Fall 2006 Ruby, Slide 27
W. H. Mitchell (whm@msweng.com)

Strings, continued

A individual character can be extracted from a string but note that the result is
an integer character code (an instance of Fixnum), not a one-character string:

>> s = "abc"
=> "abc"

>> s[0]
=> 97 # 97 is the ASCII code for 'a'

>> s[1]
=> 98

>> s[-1] # -1 is the last character, -2 is next to last, etc.
=> 99

>> s[100] # Why not produce 0 for an out of bounds reference?
=> nil

Note that the position is zero-based. A negative value indicates an offset from the
end of the string.

What's a good reason that Java provides s.charAt(n) instead of allowing s[n]?

CSc 372, Fall 2006 Ruby, Slide 28
W. H. Mitchell (whm@msweng.com)

Strings, continued

A subscripted string can be the target of an assignment.

>> s = "abc"
=> "abc"

>> s[0] = 65
=> 65

>> s[1] = "tomi"
=> "tomi"

>> s
=> "Atomic"

The numeric code for a character can be obtained by preceding the character with a question
mark:

>> s[0] = ?B
=> 66
>> s
=> "Btomic"

CSc 372, Fall 2006 Ruby, Slide 29
W. H. Mitchell (whm@msweng.com)

Strings, continued

A substring can be referenced in several ways.

>> s = "replace"
=> "replace"

>> s[2,3]
=> "pla"

>> s[2,1] Remember that s[n] yields a number, not a string.
=> "p"

>> s[2..-1] 2..-1 creates a Range object. (More on ranges later.)
=> "place"

>> s[10,10]
=> nil

>> s[-4,3]
=> "lac"

Speculate: What does s[1,100] produce? How about s[-1,-3]?

CSc 372, Fall 2006 Ruby, Slide 30
W. H. Mitchell (whm@msweng.com)

Strings, continued

A substring can be the target of assignment:

>> s = "replace"
=> "replace"

>> s[0,2] = ""
=> ""

>> s
=> "place"

>> s[3..-1] = "naria"
=> "naria"

>> s["aria"] = "kton" If "aria" appears, replace it (error if not).
=> "kton"

>> s
=> "plankton"

CSc 372, Fall 2006 Ruby, Slide 31
W. H. Mitchell (whm@msweng.com)

Strings, continued

In a string literal enclosed with double quotes, or specified with a here document,
the sequence #{expr} causes interpolation of expr, an arbitrary Ruby expression.

>> x = 10
=> 10

>> y = "twenty"
=> "twenty"

>> s = "x = #{x}, y + y = '#{y + y}'"
=> "x = 10, y + y = 'twentytwenty'"

>> s = "String methods: #{"abc".methods}".length
=> 896

The << operator appends to a string and produces the new string. The string is changed.

>> s = "just"
=> "just"
>> s << "testing" << "this"
=> "justtestingthis"

CSc 372, Fall 2006 Ruby, Slide 32
W. H. Mitchell (whm@msweng.com)

Numbers

On lectura, integers in the range -2 to 2 -1 are represented by instances of Fixnum. If an30 30

operation produces a number outside of that range, the value is represented with a Bignum.

>> x = 2**30-1 The exponentiation operator is **.
=> 1073741823

>> x.class
=> Fixnum

>> y = x + 1
=> 1073741824

>> y.class
=> Bignum

>> z = y - 1
=> 1073741823

>> z.class
=> Fixnum

How can we see what methods are available for instances of Fixnum?

CSc 372, Fall 2006 Ruby, Slide 33
W. H. Mitchell (whm@msweng.com)

Numbers, continued

The Float class represents floating point numbers that can be represented by a double-
precision floating point number on the host architecture.

>> x = 123.456
=> 123.456

>> x.class
=> Float

>> x ** 0.5
=> 11.1110755554987

>> x * 2e-3
=> 0.246912

>> x = x / 0.0
=> Infinity

>> (0.0/0.0).nan?
=> true

CSc 372, Fall 2006 Ruby, Slide 34
W. H. Mitchell (whm@msweng.com)

Numbers, continued

Fixnums and Floats can be mixed. The result is a Float.

>> 10 / 5.1
=> 1.96078431372549

>> 10 % 4.5
=> 1.0

>> 2**40 / 8.0
=> 137438953472.0

>> it.class
=> Float

Other numeric classes in Ruby include BigDecimal, Complex, Rational and Matrix.

CSc 372, Fall 2006 Ruby, Slide 35
W. H. Mitchell (whm@msweng.com)

Conversions

Unlike many scripting languages, Ruby does not automatically convert strings to numbers
and numbers to strings as needed:

>> 10 + "20"
TypeError: String can't be coerced into Fixnum

The methods to_i, to_f, and to_s are used to convert values to Fixnums, Floats, and
Strings, respectively

>> 10.to_s + "20"
=> "1020"

>> 10 + "20".to_f
=> 30.0

>> 10 + 20.9.to_i
=> 30

>> 2**100.to_f
=> 1.26765060022823e+030

Speculate: What does "123xyz".to_i produce?

CSc 372, Fall 2006 Ruby, Slide 36
W. H. Mitchell (whm@msweng.com)

Arrays

An ordered sequence of values is typically represented in Ruby by an instance of Array.

An array can be created by enclosing a comma-separated sequence of values in square
brackets:

>> a1 = [10, 20, 30]
=> [10, 20, 30]

>> a2 = ["ten", 20, 30.0, 10**40]
=> ["ten", 20, 30.0, 100]

>> a3 = [a1, a2, [[a1]]]
=> [[10, 20, 30], ["ten", 20, 30.0, 100],
[[[10, 20, 30]]]]

What's a difference between a Ruby array and an ML list?

CSc 372, Fall 2006 Ruby, Slide 37
W. H. Mitchell (whm@msweng.com)

Arrays, continued

Array elements and subarrays (sometimes called slices) are specified with a notation like that
used for strings.

>> a = [1, "two", 3.0, %w{a b c d}]
=> [1, "two", 3.0, ["a", "b", "c", "d"]]

>> a[0]
=> 1

>> a[1,2]
=> ["two", 3.0]

>> a[-1][-2]
=> "c"

>> a[-1][-2][0]
=> 99

Note that %w{ ... } provides a way to avoid the tedium of surrounding each string with
quotes. Experiment with it!

CSc 372, Fall 2006 Ruby, Slide 38
W. H. Mitchell (whm@msweng.com)

Arrays, continued

Elements and subarrays can be assigned to. Ruby accommodates a variety of cases; here are
some:

>> a = [10, 20, 30, 40, 50, 60]
=> [10, 20, 30, 40, 50, 60]

>> a[1] = "twenty"; a Note: Semicolon separates expressions; a's value is shown.
=> [10, "twenty", 30, 40, 50, 60]

>> a[2..4] = %w{a b c d e}; a
=> [10, "twenty", "a", "b", "c", "d", "e", 60]

>> a[1..-1] = []; a
=> [10]

>> a[0] = [1,2,3]; a
=> [[1, 2, 3]]

>> a[10] = [5,6]; a
=> [[1, 2, 3], nil, nil, nil, nil, nil, nil, nil, nil, nil, [5, 6]]

CSc 372, Fall 2006 Ruby, Slide 39
W. H. Mitchell (whm@msweng.com)

Arrays, continued

A variety of operations are provided for arrays. Here's a small sample:

>> a = []
=> []

>> a << 1; a
=> [1]

>> a << [2,3,4]; a
=> [1, [2, 3, 4]]

>> a.reverse!; a
=> [[2, 3, 4], 1]

>> a[0].shift
=> 2

>> a
=> [[3, 4], 1]

>> a,b = [1,2,3,4], [1,3,5]
=> [[1, 2, 3, 4], [1, 3, 5]]

>> a + b
=> [1, 2, 3, 4, 1, 3, 5]

>> a - b
=> [2, 4]

>> a & b
=> [1, 3]

>> a | b
=> [1, 2, 3, 4, 5]

>> a == (a | b)[0..3]
=> true

CSc 372, Fall 2006 Ruby, Slide 40
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Ruby, Slide 41
W. H. Mitchell (whm@msweng.com)

Control structures

The while loop

Sidebar: Source code layout

Expressions or statements?

Logical operators

if-then-else

if and unless as modifiers

break and next

The for loop

CSc 372, Fall 2006 Ruby, Slide 42
W. H. Mitchell (whm@msweng.com)

The while loop

Here is a loop to print the numbers from 1 through 10, one per line.

i = 1
while i <= 10
 puts i
 i += 1
end

When i <= 10 produces false, control branches to the code following end (if any).

The body of the while is always terminated with end, even if there's only one expression in
the body.

The control expression can be optionally followed by do or a colon. Example:

while i <= 10 do # Or, while i <= 10 :
 puts i
 i += 1
end

What's a minor problem with Ruby's syntax versus Java's use of braces to bracket multi-line
loop bodies?

CSc 372, Fall 2006 Ruby, Slide 43
W. H. Mitchell (whm@msweng.com)

while, continued

In Java, control structures like if, while, and for are driven by the result of expressions that
produce a value whose type is boolean. C has a more flexible view: control structures
consider an integer value that is non-zero to be "true".

In Ruby, any value that is not false or nil is considered to be "true".

Consider this loop, which reads lines from standard input using gets.

while line = gets
 puts line
end

Each call to gets returns a string that is the next line of the file. The string is assigned to line
and like Java, assignment produces the value assigned. If the first line of the file is "one",
then the first time through the loop, what's evaluated is while "one". The value "one" is not
false or nil, so the body of the loop is executed and "one" is printed on standard output.

At end of file, gets returns nil. nil is assigned to line and produced as the value of the
assignment, terminating the loop in turn.

 I bet some of you get this wrong the first time, like I did!1

CSc 372, Fall 2006 Ruby, Slide 44
W. H. Mitchell (whm@msweng.com)

while, continued

On UNIX machines the string returned by gets has a trailing newline. The chomp method
of String can be used to remove it.

Here's a program that is intended to flatten the input lines to a single line:

result = ""

while line = gets.chomp
 result += line
end

puts result

It doesn't work. What's wrong with it?

Problem: Write a while loop that prints the characters in the string s, one per line. Don't use
the length or size methods of String.1

CSc 372, Fall 2006 Ruby, Slide 45
W. H. Mitchell (whm@msweng.com)

Sidebar: Source code layout

Unlike Java, Ruby does pay some attention to the presence of newlines in source code. For
example, a while loop cannot be naively compressed to a single line. This does not work:

while i <= 10 puts i i += 1 end # Syntax error!

If we add semicolons where newlines originally were, it works:

while i <= 10; puts i; i += 1; end # OK

There is some middle ground, too:

while i <= 10 do puts i; i += 1 end # OK

CSc 372, Fall 2006 Ruby, Slide 46
W. H. Mitchell (whm@msweng.com)

Source code layout, continued

Ruby considers a newline to terminate an expression, unless the expression is definitely
incomplete. Examples:

while i <= # OK because "i <=" is definitely incomplete
10 do puts i; i += 1 end

while i # NOT OK. "while i" is complete, but then "<= 10"
<= 10 do puts i; i += 1 end # is flagged as a syntax error.

There is a pitfall related to this rule. For example, Ruby considers

x = a + b
 - c

to be two expressions: x = a +b and -c.

Rule of thumb: If breaking an expression across lines, put an operator at the end of the line:

x = a + b +
 c

Alternative: Indicate continuation with a backslash at the end of the line.

CSc 372, Fall 2006 Ruby, Slide 47
W. H. Mitchell (whm@msweng.com)

Expression or statement?

Academic writing on programming languages commonly uses the term "statement" to denote
a syntactic element that performs an operation but does not produce a value. The term
"expression" is consistently used to describe an operation that produces a value.

Ruby literature, including the text, sometimes talks about the "while statement" even though
while produces a value:

>> i = 1
=> 1

>> a = (while i <= 3 do i += 1 end)
=> nil

Dilemma: Should we call it the "while statement" or the "while expression"?

The text sometimes uses the term "while loop" instead.

We'll see later that the break construct can cause a while loop to produce a value other than
nil.

CSc 372, Fall 2006 Ruby, Slide 48
W. H. Mitchell (whm@msweng.com)

Logical operators

Ruby has operators for conjunction, disjunction, and "not" with the same symbols as Java,
but with somewhat different semantics.

Conjunction is &&, just like Java, but note the values produced:

>> true && false
=> false

>> 1 && 2
=> 2

>> true && "abc"
=> "abc"

>> true && false
=> false

>> true && nil
=> nil

Challenge: Precisely describe the rule that Ruby uses to determine the value of a conjunction
operation.

CSc 372, Fall 2006 Ruby, Slide 49
W. H. Mitchell (whm@msweng.com)

Logical operators, continued

Disjunction is ||, just like Java. As with conjunction, the values produced are interesting:

>> 1 || nil
=> 1

>> false || 2
=> 2

>> "abc" || "xyz"
=> "abc"

>> s = "abc"
=> "abc"

>> s[0] || s[3]
=> 97

>> s[4] || false
=> false

CSc 372, Fall 2006 Ruby, Slide 50
W. H. Mitchell (whm@msweng.com)

Logical operators, continued

Just like Java, an exclamation mark inverts a logical value. The resulting value is true or
false.

>> ! true
=> false

>> ! 1
=> false

>> ! nil
=> true

>> ! (1 || 2)
=> false

>> ! ("abc"[5] || [1,2,3][10])
=> true

>> ![nil]
=> false

There are also and, or, and not operators, but with very low precedence. Why?

CSc 372, Fall 2006 Ruby, Slide 51
W. H. Mitchell (whm@msweng.com)

The if-then-else construct

Ruby's if-then-else looks familiar:

>> if 1 < 2 then "three" else [4] end
=> "three"

>> if 10 < 2 then "three" else [4] end
=> [4]

>> if 0 then "three" else [4] end
=> "three"

What can we say about it?

Speculate: What will 'if 1 > 2 then 3 end' produce?

CSc 372, Fall 2006 Ruby, Slide 52
W. H. Mitchell (whm@msweng.com)

if-then-else, continued

If there's no else clause and the control expression is false, nil is produced:

>> if 1 > 2 then 3 end
=> nil

If a language provides for if-then-else to return a value it raises the issue of what if-then
means.

• In the C family, if-then-else doesn't return a value.

• ML simply doesn't allow an else-less if.

• In Icon, an expression like if > 2 then 3 is said to fail. No value is produced and that
failure propagates to any enclosing expression, which in turn fails.

Ruby also provides 1 > 2 ? 3 : 4, a ternary conditional operator, just like the C family. Is
that a good thing or bad thing?

CSc 372, Fall 2006 Ruby, Slide 53
W. H. Mitchell (whm@msweng.com)

if-then-else, continued

The most common Ruby coding style puts the if, the else, the end, and the expressions of the
clauses on separate lines:

if lower <= x && x <= higher or inExtendedRange(x, rangeList) then
 puts "x is in range"
 history.add(x)
else
 outliers.add(x)
end

Speculate: Ruby has both || and or for disjunction. Why was or used above?

CSc 372, Fall 2006 Ruby, Slide 54
W. H. Mitchell (whm@msweng.com)

The elsif clause

Ruby provides an elsif clause for "else-if" situations.

if average >= 90 then
 grade = "A"
elsif average >= 80 then
 grade = "B"
elsif average >= 70 then
 grade = "C"
else
 grade = "F"
end

Note that there is no "end" to terminate the then clauses. elsif both closes the current then
and starts a new clause.

It is not required to have a final else.

How could the code above be improved?

Is elsif syntactic sugar?

CSc 372, Fall 2006 Ruby, Slide 55
W. H. Mitchell (whm@msweng.com)

if and unless as modifiers

Conditional execution can be indicated by using if and unless as modifiers.

>> total, count = 123.4, 5
=> [123.4, 5]

>> printf("average = %g\n", total / count) if count != 0
average = 24.68
=> nil

>> total, count = 123.4, 0
=> [123.4, 0]

>> printf("average = %g\n", total / count) unless count == 0
=> nil

The general forms are:

expression1 if expression2
expression1 unless expression2

What does 'x.f if x' mean?

CSc 372, Fall 2006 Ruby, Slide 56
W. H. Mitchell (whm@msweng.com)

break and next

The break and next expressions are similar to break and continue in Java.

Below is a loop that reads lines from standard input, terminating on end of file or when a line
beginning with a period is read. Each line is printed unless the line begins with a pound sign.

while line = gets

 if line[0] == ?. then
 break
 end

 if line[0] == ?# then next end

 puts line
end

Recall: (1) If s is a string, s[0] produces an integer. (2) The construct ?c produces the integer
code of the character c.

Problem: Rewrite it to use if as a modifier.

CSc 372, Fall 2006 Ruby, Slide 57
W. H. Mitchell (whm@msweng.com)

break and next, continued

If an expression is specified with break, the value of the expression becomes the value of the
while:

% cat break2.rb
s = "x"

puts (while true do
 break s if s.size > 30
 s += s
end)

% ruby break2.rb
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
%

Two other control flow modifiers used with loops are redo and retry.

CSc 372, Fall 2006 Ruby, Slide 58
W. H. Mitchell (whm@msweng.com)

The for loop

Here are three simple examples of Ruby's for loop:

for i in 1..100 do
 sum += i
end

for i in [10,20,30] do
 sum += i
end

for method_name in "x".methods do
 puts method_name if method_name.include? "!"
end

The "in" expression must be an object that has an each method. In the first case, the "in"
expression is a Range. In the latter two it is an Array.

break and next have the same meaning as in a while loop.

CSc 372, Fall 2006 Ruby, Slide 59
W. H. Mitchell (whm@msweng.com)

The for loop, continued

The for loop supports parallel assignment:

for s,n,sep in [["1",5,"-"], ["s",2,"o"], [" <-> ",10,""]] do
 puts [s] * n * sep
end

Output:

1-1-1-1-1
sos
 <-> <-> <-> <-> <-> <-> <-> <-> <-> <->

Is it good or bad that the for loop specifically supports parallel assignment? How
inconvenient would it be to do without it?

Of course, while, for, if-then-else and other statements can be arbitrarily interleaved and
nested, just like in most languages.

CSc 372, Fall 2006 Ruby, Slide 60
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Ruby, Slide 61
W. H. Mitchell (whm@msweng.com)

Freestanding Methods

Basics

Where's the class?

Domain and range in Ruby

Varying numbers of arguments

CSc 372, Fall 2006 Ruby, Slide 62
W. H. Mitchell (whm@msweng.com)

Method definition

Here is a Ruby version of a simple method:

def double(x)
 return x * 2
end

The keyword def indicates that a method definition follows. Next is the method name. The
parameter list follows.

If the end of a method is reached without encountering a return, the value of the last
expression becomes the return value. Here is an equivalent definition:

def double(x)
 x * 2
end

If no arguments are required, the parameter list can be omitted

def hello
 puts "Hello, world!"
end

CSc 372, Fall 2006 Ruby, Slide 63
W. H. Mitchell (whm@msweng.com)

Method definition, continued

One way to get a method into irb is to use load:

% cat double.rb
def double(x)
 x * 2
end

% irb --prompt simple
>> load "double.rb"
=> true

>> double(5)
=> 10

CSc 372, Fall 2006 Ruby, Slide 64
W. H. Mitchell (whm@msweng.com)

Method definition, continued

Alternatively, we can type a definition directly into irb:

% irb
irb(main):001:0> def double(x)
irb(main):002:1> x * 2
irb(main):003:1> end
=> nil

irb(main):004:0> double(5)
=> 10

irb(main):005:0>

Note that irb was run without "--prompt simple". The default prompt includes a line counter
and a nesting depth.

CSc 372, Fall 2006 Ruby, Slide 65
W. H. Mitchell (whm@msweng.com)

If double is a method, where's the class?

You may have noticed that even though we claim to be defining a method named double,
there's no class in sight.

In Ruby, methods can be added to a class at run-time. A freestanding method defined in irb
or found in a file is associated with an object referred to as "main", an instance of Object. At
the top level, the name self references that object.

>> [self.class, self.to_s]
=> [Object, "main"] # The class of self and a string representation of it.

>> methods_b4 = self.methods
=> ["methods", "popb", ...lots more...]

>> def double(x); x * 2 end
=> nil

>> self.methods - methods_b4
=> ["double"]

We can see that self has one more method (double) after double is defined.

CSc 372, Fall 2006 Ruby, Slide 66
W. H. Mitchell (whm@msweng.com)

Domain and range in Ruby

For reference:

def double(x)
 x * 2
end

For the ML analog of double the domain and range are the integers. (int -> int)

What is the domain and range of double in Ruby?

CSc 372, Fall 2006 Ruby, Slide 67
W. H. Mitchell (whm@msweng.com)

Domain and range in Ruby, continued

Problem: Write a method polysum(A) that produces a "sum" of the values in the array A.

Examples:

>> polysum([1,3,5])
=> 9

>> polysum([1.1,3.3,5.5])
=> 9.9

>> polysum(["one", "two"])
=> "onetwo"

>> polysum([["one"], [2,3,4], [[1],[1..10]]])
=> ["one", 2, 3, 4, [1], [1..10]]

How can we describe the domain and range of polysum?

CSc 372, Fall 2006 Ruby, Slide 68
W. H. Mitchell (whm@msweng.com)

Varying numbers of arguments

Unlike some scripting languages, Ruby considers it to be an error if the wrong number of
arguments is supplied to a routine.

def wrap(s, wrapper)
 wrapper[0,1] + s + wrapper[1,1]
end

>> wrap("testing", "<>")
=> "<testing>"

>> wrap("testing")
ArgumentError: wrong number of arguments (1 for 2)

>> wrap("testing", "<", ">")
ArgumentError: wrong number of arguments (3 for 2)

Contrast: Icon supplies &null (similar to Ruby's nil) for missing arguments. Extra arguments
are ignored.

CSc 372, Fall 2006 Ruby, Slide 69
W. H. Mitchell (whm@msweng.com)

Varying numbers of arguments, continued

Ruby does not allow the methods of a class to be overloaded. Here's a Java-like approach
that DOES NOT WORK:

def wrap(s)
 wrap(s, "()")
end

def wrap(s, wrapper)
 wrapper[0,1] + s + wrapper[1,1]
end

The imagined intention is that if wrap is called with one argument it will call the
two-argument wrap with "()" as a second argument.

In fact, the second definition of wrap simply replaces the first. (Last def wins!)

>> wrap "x"
ArgumentError: wrong number of arguments (1 for 2)

>> wrap("testing", "[]")
=> "[testing]"

CSc 372, Fall 2006 Ruby, Slide 70
W. H. Mitchell (whm@msweng.com)

Varying numbers of arguments, continued

There's no intra-class method overloading but Ruby does allow default values to be specified
for arguments:

def wrap(s, wrapper = "()")
 wrapper[0,1] + s + wrapper[1,1]
end

>> wrap("x", "<>")
=> "<x>"

>> wrap("x")
=> "(x)"

CSc 372, Fall 2006 Ruby, Slide 71
W. H. Mitchell (whm@msweng.com)

Varying numbers of arguments, continued

Any number of defaulting arguments can be specified. Imagine a method that creates a
window:

def make_window(height = 500, width = 700,
font = "Roman/12", upper_left = 0, upper_right = 0)

 ...
end

A variety of calls are possible. Here are some:

make_window

make_window(100, 200)

make_window(100, 200, "Courier/14")

Here's something that DOES NOT WORK:

make_window(, , "Courier/14") Leading arguments can't be omitted!

CSc 372, Fall 2006 Ruby, Slide 72
W. H. Mitchell (whm@msweng.com)

Sidebar: A study in contrast

Different languages approach overloading and default arguments in various ways. Here's a
sampling:

Java Overloading; no default arguments

C++ Overloading and default arguments

Ruby No overloading; default arguments

Icon No overloading; no default arguments; use an idiom

Here is wrap in Icon:

procedure wrap(s, wrapper)
/wrapper := "()" # if wrapper is &null, assign "()" to wrapper
return wrapper[1] || s || wrapper[2]

end

CSc 372, Fall 2006 Ruby, Slide 73
W. H. Mitchell (whm@msweng.com)

Varying numbers of arguments, continued

It can be useful to have a method take an arbitrary number of arguments. printf is a good
example.

Here's a Ruby method that accepts any number of arguments and simply prints them:

def showargs(*args)

 printf("%d arguments:\n", args.size)

 for i in 0...args.size do # a...b is a to b-1
 printf("#%d: %s\n", i, args[i])
end

end

If a parameter is prefixed with an asterisk, an array is made of any remaining arguments.

>> showargs(1, "two", 3.0)
3 arguments:
#0: 1
#1: two
#2: 3.0

CSc 372, Fall 2006 Ruby, Slide 74
W. H. Mitchell (whm@msweng.com)

Varying numbers of arguments, continued

Problem: Modify polysum so that this works:

>> polysum(1,2,3,4) # Instead of polysum([1,2,3,4])
=> 10

Problem: Write a method printf0 that's like printf but simply interpolates argument values as
a string (use to_s) where a percent sign is found:

>> printf0("x = %, y = %, z = %\n", 10, "ten", "z")
x = 10, y = ten, z = z
=> 23

>> printf0("testing\n")
testing
=> 8

CSc 372, Fall 2006 Ruby, Slide 75
W. H. Mitchell (whm@msweng.com)

Varying numbers of arguments, continued

Sometimes we want to call a method with the values in an array:

>> def add(x,y) x + y end

>> pair = [3,4]

>> add(pair[0], pair[1])
=> 7

Here's an alternative:

>> add(*pair)
=> 7

In a method call, prefixing an array value with an asterisk causes the values in the array to
become a sequence of parameters.

Speculate: What will be the result of add(*[1,2,3])?

CSc 372, Fall 2006 Ruby, Slide 76
W. H. Mitchell (whm@msweng.com)

Varying numbers of arguments, continued

Recall make_window:

def make_window(height = 500, width = 700,
font = "Roman/12", upper_left = 0, upper_right = 0)

 ...printf to echo the arguments...
end

Results of array-producing methods can be passed easily to make_window:

>> where = get_loc(...whatever...)
=> [50, 50]

>> make_window(100, 200, "Arial/8", *where)
make_window(height = 100, width = 200, font = Arial/8, at = (50, 50)

>> win_spec = get_spec(...whatever...)
=> [100, 200, "Courier/9"]

>> make_window(*win_spec)
make_window(height = 100, width = 200, font = Courier/9, at = (0, 0)

Speculate: Will make_window(*[300,400], "x", *[10,10]) work?

CSc 372, Fall 2006 Ruby, Slide 77
W. H. Mitchell (whm@msweng.com)

Iterators and blocks

Using iterators and blocks

Iterate with each or use a for loop?

Creating iterators

CSc 372, Fall 2006 Ruby, Slide 78
W. H. Mitchell (whm@msweng.com)

Iterators and blocks

Some methods are iterators. An iterator that is implemented by the Array class is each.
each iterates over the elements of the array. Example:

>> x = [10,20,30]
=> [10, 20, 30]

>> x.each { puts "element" }
element
element
element
=> [10, 20, 30]

The construct { puts "element" } is a block. Array#each invokes the block once for each of
the elements of the array.

Because there are three values in x, the block is invoked three times and "element" is printed
three times.

Speculate: What does (1..50).each { putc ?x } do?

CSc 372, Fall 2006 Ruby, Slide 79
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

Iterators can pass one or more values to a block as arguments. Array#each passes each
array element in turn.

A block can access arguments by naming them with a parameter list, a comma-separated
sequence of identifiers enclosed in vertical bars.

We might print the values in an array like this:

>> [10, "twenty", 30].each { |e| printf("element: %s\n", e) }
element: 10
element: twenty
element: 30

A note about the format %s: In C, the value of the corresponding parameter must be a pointer
to a zero-terminated sequence of char values. Ruby is more flexible—%s causes to_s to be
invoked on the corresponding value. The result of to_s is used.

Another possibility for the format is %p, which causes inspect to be invoked. However, the
second line above would be element: "twenty".

CSc 372, Fall 2006 Ruby, Slide 80
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

For reference:

[10, "twenty", 30].each { |e| printf("element: %s\n", e) }

Problem: Using a block, compute the sum of the numbers in an array containing values of
any type. (Use elem.is_a? Numeric to decide whether elem is a number of some sort.)

Examples:

>> sum = 0

>> [10, "twenty", 30].each { ??? }
>> sum
=> 40

>> sum = 0

>> (1..100).each { ??? }

>> sum
=> 5050

CSc 372, Fall 2006 Ruby, Slide 81
W. H. Mitchell (whm@msweng.com)

Sidebar: Iterate with each or use a for loop?

You may recall that the for loop requires the result of the "in" expression to have an each
method. Thus, we always have a choice between a for loop,

for name in "x".methods do
 puts name if name.include? "!"
end

and iteration with each,

"x".methods.each {|name| puts name if name.include? "!" }

Which is better?

CSc 372, Fall 2006 Ruby, Slide 82
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

Array#each is typically used to create side effects of interest, like printing values or
changing variables but in many cases it is the value returned by an iterator that is of principle
interest.

See if you can describe what each of the following iterators is doing.

>> [10, "twenty", 30].collect { |v| v * 2 }
=> [20, "twentytwenty", 60]

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

>> ["burger", "fries", "shake"].sort { |a,b| a[-1] <=> b[-1] }
=> ["shake", "burger", "fries"]

>> [10, 20, 30].inject(0) { |sum, i| sum + i }
=> 60

>> [10,20,30].inject([]) { |thusFar, element| thusFar << element << "---" }
=> [10, "---", 20, "---", 30, "---"]

CSc 372, Fall 2006 Ruby, Slide 83
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

We have yet to study inheritance in Ruby but we can query the ancestors of a class like this:

>> Array.ancestors
=> [Array, Enumerable, Object, Kernel]

Because an instance of Array is an Enumerable, we can apply iterators in Enumerable to
arrays:

>> [2, 4, 5].any? { |n| n % 2 == 0 }
=> true

>> [2, 4, 5].all? { |n| n % 2 == 0 }
=> false

>> [1,10,17,25].detect { |n| n % 5 == 0 }
=> 10

>> ["apple", "banana", "grape"].max { |a,b| v = "aeiou";
 a.count(v) <=> b.count(v) }
=> "banana"

CSc 372, Fall 2006 Ruby, Slide 84
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

Many classes have iterators. Here are some examples:

>> 3.times { |i| puts i }
0
1
2
=> 3

>> "abc".each_byte { |b| puts b }
97
98
99

>> (1..50).inject(1) { |product, i| product * i }
=> 30414093201713378043612608166064768844377641568960512000000000000

To print each line in the file x.txt, we might do this:

IO.foreach("x.txt") { |line| puts line }

A quick way to find the iterators for a class is to search for "block" in the documentation.

CSc 372, Fall 2006 Ruby, Slide 85
W. H. Mitchell (whm@msweng.com)

Blocks and iterators, continued

As you'd expect, blocks can be nested. Here is a program that reads lines from standard
input, assumes the lines consist of integers separated by spaces, and averages the values.

total = n = 0
STDIN.readlines().each {
 |line|
 line.split(" ").each {
 |word|
 total += word.to_i
 n += 1
 }
 }

printf("Total = %d, n = %d, Average = %g\n", total, n, total / n.to_f) if n != 0

Notes:
• STDIN represents "standard input". It is an instance of IO.
• STDIN.readlines reads standard input to EOF and returns an array of the lines read.
• The printf format specifier %g indicates to format the value as a floating point

number and select the better of fixed point or exponential form based on the value.

% cat nums.dat
5 10 0 50

 200
1 2 3 4 5 6 7 8 9 10
% ruby sumnums.rb < nums.dat
Total = 320, n = 15, Average = 21.3333

CSc 372, Fall 2006 Ruby, Slide 86
W. H. Mitchell (whm@msweng.com)

Some details on blocks

An alternative to enclosing a block in braces is to use do/end:

a.each do
|element|

 printf("element: %s\n", element)
 end

do/end has lower precedence than braces but that only becomes an issue if the iterator is
supplied an argument that is not enclosed in parentheses. (Good practice: enclose iterator
argument(s) in parentheses, as shown in these slides.)

Note that do, {, or a backslash (to indicate continuation) must appear on the same line as the
iterator invocation. The following will produce an error

a.each
 do # "LocalJumpError: no block given"

|element|
 printf("element: %s\n", element)
 end

CSc 372, Fall 2006 Ruby, Slide 87
W. H. Mitchell (whm@msweng.com)

Some details on blocks, continued

Blocks raise issues with the scope of variables. If a variable is created in a block, the scope
of the variable is limited to the block:

>> x
NameError: undefined local variable or method `x' for main:Object

>> [1].each { x = 10 } => [1]

>> x
NameError: undefined local variable or method `x' for main:Object

If a variable already exists, a reference in a block is resolved to that existing variable.

>> x = "test" => "test"

>> [1].each { x = 10 } => [1]

>> x => 10

Sometimes you want that, sometimes you don't. It's said that this behavior may change with
Ruby 2.0.

CSc 372, Fall 2006 Ruby, Slide 88
W. H. Mitchell (whm@msweng.com)

Creating iterators with yield

In Ruby, an iterator is "a method that can invoke a block".

The yield expression invokes the block associated with the current method invocation.

Here is a simple iterator that yields two values, a 3 and a 7:

def simple()
 puts "simple: Starting up..."
 yield 3

 puts "simple: More computing..."
 yield 7

 puts "simple: Out of values..."
 "simple result"
end

The iterator (simple) prints a line of output, then calls the block with the value 3. The
iterator prints another line and calls the block with 7. It prints one more line and then returns,
producing "simple result" as the value of simple() { |x| printf("\tx = %d\n", x) }.

Notice how the flow of control alternates between the iterator and the block.

Usage:

>> simple() { |x| printf("\tx = %d\n", x) }
simple: Starting up...
 x = 3
simple: More computing...
 x = 7
simple: Out of values...
=> "simple result"

CSc 372, Fall 2006 Ruby, Slide 89
W. H. Mitchell (whm@msweng.com)

yield, continued

Problem: Write an iterator from_to(f, t, by) that yields the integers from f through t in
steps of by, which defaults to 1.

>> from_to(1,10) { |i| puts i }
1
2
...
10
=> nil

>> from_to(0,100,25) { |i| puts i }
0
25
50
75
100
=> nil

CSc 372, Fall 2006 Ruby, Slide 90
W. H. Mitchell (whm@msweng.com)

yield, continued

If a block is to receive multiple arguments, just specify them as a comma-separated list for
yield.

Here's an iterator that produces consecutive pairs of elements from an array:

def elem_pairs(a)
 for i in 0..(a.length-2)
 yield a[i], a[i+1]
 end
end

Usage:

>> elem_pairs([3,1,5,9]) { |x,y| printf("x = %s, y = %s\n", x, y) }
x = 3, y = 1
x = 1, y = 5
x = 5, y = 9

Speculate: What will be the result with yield [a[i], a[i+1]]? (Extra brackets.)

CSc 372, Fall 2006 Ruby, Slide 91
W. H. Mitchell (whm@msweng.com)

yield, continued

Recall that Array#select produces the elements for which the block returns true:

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

Speculate: How is the code in select accessing the result of the block?

CSc 372, Fall 2006 Ruby, Slide 92
W. H. Mitchell (whm@msweng.com)

yield, continued

The last expression in a block becomes the value of the yield that invoked the block.

Here's how we might implement a function-like version of select:

def select(enumerable)
 result = []
 enumerable.each do
 |element|
 if yield element then
 result << element
 end
 end
 return result
end

Usage:

>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }
=> ["a", [3]]

Note the we pass the array as an argument instead of invoking the object's select method.

CSc 372, Fall 2006 Ruby, Slide 93
W. H. Mitchell (whm@msweng.com)

yield, continued

Problem: Implement in Ruby an analog for ML's foldr.

>> foldr([10,20,30], 0) { |e, thus_far| e + thus_far }
=> 60

>> foldr([10,20,30], 0) { |e, thus_far| 1 + thus_far }
=> 3

>> foldr([5, 1, 7, 2], 0) { |e, max| e > max ? e : max }
=> 7

Here's a weakness in the instructor's implementation:

>> foldr(1..10, []) { |e,thus_far| thus_far + [e] }
NoMethodError: undefined method `reverse_each' for 1..10:Range

What can we learn from it?

CSc 372, Fall 2006 Ruby, Slide 94
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Ruby, Slide 95
W. H. Mitchell (whm@msweng.com)

A Batch of Odds and Ends

Constants

Symbols

The Hash class

CSc 372, Fall 2006 Ruby, Slide 96
W. H. Mitchell (whm@msweng.com)

Constants

A rule in Ruby is that if an identifier begins with a capital letter, it represents a constant.

Ruby allows a constant to be changed but a warning is generated:

>> A = 1
=> 1

>> A = 2; A
(irb): warning: already initialized constant A
=> 2

Modifying an object referenced by a constant does not produce a warning:

>> L = [10,20]
=> [10, 20]

>> L << 30; L
=> [10, 20, 30]

>> L = 1
(irb): warning: already initialized constant L

CSc 372, Fall 2006 Ruby, Slide 97
W. H. Mitchell (whm@msweng.com)

Constants, continued

You may have noticed that the names of all the standard classes are capitalized. That's not
simply a convention; Ruby requires class names to be capitalized.

>> class b
>> end
SyntaxError: compile error
(irb): class/module name must be CONSTANT

If a method is given a name that begins with a capital letter, it can't be found:

>> def M; 10 end
=> nil
>> M
NameError: uninitialized constant M

CSc 372, Fall 2006 Ruby, Slide 98
W. H. Mitchell (whm@msweng.com)

Constants, continued

There are a number of predefined constants. Here are a few:

ARGV
An array holding the command line arguments, like the argument to main in a Java
program.

FALSE, TRUE, NIL
Synonyms for false, true, and nil.

STDIN, STDOUT
Instances of IO representing standard input and standard output (the keyboard and
screen, by default).

CSc 372, Fall 2006 Ruby, Slide 99
W. H. Mitchell (whm@msweng.com)

Symbols

An identifier preceded by a colon creates a Symbol. A symbol is much like a string but a
given identifier always produces the same symbol:

>> s = :length => :length

>> s.object_id => 42498

>> :length.object_id => 42498

In contrast, two identical string literals produce two different String objects:

>> "length".object_id => 23100890

>> "length".object_id => 23096170

If you're familiar with Java's String.intern method, note that Ruby's String#to_sym is roughly
equivalent:

>> "length".to_sym.object_id => 42498

For the time being, it's sufficient to simply know that :identifier creates a Symbol.

CSc 372, Fall 2006 Ruby, Slide 100
W. H. Mitchell (whm@msweng.com)

The Hash class

Ruby's Hash class is similar to Hashtable and Map in Java. It can be thought of as an array
that can be subscripted with values of any type, not just integers.

The expression { } (empty curly braces) creates a Hash:

>> numbers = { } => { }

>> numbers.class => Hash

Subscripting a hash with a "key" and assigning a value to it stores that key/value pair in the
hash:

>> numbers["one"] = 1 => 1

>> numbers["two"] = 2 => 2

>> numbers => {"two"=>2, "one"=>1}

>> numbers.size => 2

CSc 372, Fall 2006 Ruby, Slide 101
W. H. Mitchell (whm@msweng.com)

Hash, continued

At hand:

>> numbers => {"two"=>2, "one"=>1}

To fetch the value associated with a key, simply subscript the hash with the key. If the key is
not found, nil is produced.

>> numbers["two"] => 2

>> numbers["three"] => nil

The value associated with a key can be changed via assignment. A key/value pair can be
removed with Hash#delete.

>> numbers["two"] = "1 + 1" => "1 + 1"

>> numbers.delete("one") => 1 # The associated value, if any, is
returned.

>> numbers => {"two"=>"1 + 1"}

Speculate: What is the net result of numbers["two"] = nil?

CSc 372, Fall 2006 Ruby, Slide 102
W. H. Mitchell (whm@msweng.com)

Hash, continued

There are no restrictions on the types that can be used for keys and values.

>> h = { } => { }

>> h[1000] = [1,2] => [1, 2]

>> h[true] = { } => { }

>> h[[1,2,3]] = [4] => [4]

>> h => {true=>{ }, [1, 2, 3]=>[4], 1000=>[1, 2]}

>> h[h[1000] + [3]] << 40 => [4, 40]

>> h[!h[10]]["x"] = "ten" => "ten"

>> h => {true=>{"x"=>"ten"}, [1, 2, 3]=>[4, 40], 1000=>[1, 2]}

CSc 372, Fall 2006 Ruby, Slide 103
W. H. Mitchell (whm@msweng.com)

Hash, continued

It was said earlier that if a key is not found, nil is returned. That was a simplification. In
fact, the default value of the hash is returned if the key is not found.

The default value of a hash defaults to nil but an arbitrary default value can be specified when
creating a hash with new:

>> h = Hash.new("Go Fish!") => { } # Example from ruby-doc.org

>> h["x"] = [1,2] => [1, 2]

>> h["x"] => [1, 2]

>> h["y"] => "Go Fish!"

>> h.default => "Go Fish!"

It is not discussed here but there is also a form of Hash#new that uses a block to produce
default values.

CSc 372, Fall 2006 Ruby, Slide 104
W. H. Mitchell (whm@msweng.com)

Hash example: tally.rb

Here is a program that reads lines from standard input and tallies the number of occurrences
of each word. The final counts are dumped with inspect.

counts = Hash.new(0) # Use default of zero so that ' += 1' works.

STDIN.readlines.each {
 |line|
 line.split(" ").each {
 |word|
 counts[word] += 1
 }
 }
puts counts.inspect # Equivalent: p counts

Usage:

% ruby tally.rb
to be or
not to be
^D
{"or"=>1, "be"=>2, "to"=>2, "not"=>1}

CSc 372, Fall 2006 Ruby, Slide 105
W. H. Mitchell (whm@msweng.com)

tally.rb, continued

The output of puts counts.inspect is not very user-friendly:

{"or"=>1, "be"=>2, "to"=>2, "not"=>1}

Hash#sort produces a list of key/value lists ordered by the keys, in ascending order:

>> counts.sort
[["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Problem: Produce nicely labeled output, like this:

Word Count
be 2
not 1
or 1
to 2

CSc 372, Fall 2006 Ruby, Slide 106
W. H. Mitchell (whm@msweng.com)

tally.rb, continued

At hand:

>> counts.sort
[["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Solution:

([["Word","Count"]] + counts.sort).each {
 |k,v| printf("%-10s\t%5s\n", k, v) # %-10s left-justifies in a field of width 10
 }

As a shortcut for easy alignment, the column headers are put at the start of the list. Then, we
use %5s instead of %5d to format the counts and accommodate "Count". (Recall that this
works because %s causes to_s to be invoked on the value.)

Is the shortcut a "programming technique" or a hack?

CSc 372, Fall 2006 Ruby, Slide 107
W. H. Mitchell (whm@msweng.com)

tally.rb, continued

Hash#sort's default behavior of ordering by keys can be overridden by supplying a block.

The block is repeatedly invoked with two arguments: a pair of list elements.

>> counts.sort { |a,b| puts "a = #{a.inspect}, b = #{b.inspect}"; 1}
a = ["or", 1], b = ["to", 2]
a = ["to", 2], b = ["not", 1]
a = ["be", 2], b = ["to", 2]
a = ["be", 2], b = ["or", 1]

The block is to return -1, 0, or 1 depending on whether a is considered to be less than, equal
to, or greater than b.

Here's a block that sorts by descending count: (the second element of the two-element lists)

>> counts.sort { |a,b| b[1] <=> a[1] }
[["to", 2], ["be", 2], ["or", 1], ["not", 1]]

How could we put ties on the count in ascending order by the words? Example:
[["be", 2], ["to", 2], ["not", 1], ["or", 1]]

CSc 372, Fall 2006 Ruby, Slide 108
W. H. Mitchell (whm@msweng.com)

Hash initialization

It is tedious to initialize a hash with a series of assignments:

numbers = { }
numbers["one"] = 1
numbers["two"] = 2
...

Ruby provides a shortcut:

>> numbers = { "one", 1, "two", 2, "three", 3 }
=> {"three"=>3, "two"=>2, "one"=>1}

There's a more verbose variant, too:

>> numbers = { "one" => 1, "two" => 2, "three" => 3 }
=> {"three"=>3, "two"=>2, "one"=>1}

One more option: (but note that both keys and values are strings)

>> Hash[* %w/a 1 b 2 c 3 d 4 e 5/]
=> {"a"=>"1", "b"=>"2", "c"=>"3", "d"=>"4", "e"=>"5"}

CSc 372, Fall 2006 Ruby, Slide 109
W. H. Mitchell (whm@msweng.com)

Regular Expressions

A little theory

Good news and Bad news

The match operator

Character classes

Alternation and grouping

Repetition

split and scan

Anchors

Grouping and references

Iteration with gsub

Application: Time totaling

CSc 372, Fall 2006 Ruby, Slide 110
W. H. Mitchell (whm@msweng.com)

A little theory

In computer science theory, a language is a set of strings. The set may be infinite.

The Chomsky hierarchy of languages looks like this:

Unrestricted languages ("Type 0")
Context-sensitive languages ("Type 1")
Context-free languages ("Type 2")
Regular languages ("Type 3")

Roughly speaking, natural languages are unrestricted languages that can only specified by
unrestricted grammars.

Programming languages are usually context-free languages—they can be specified with a
context-free grammar, which has very restrictive rules. Every Java program is a string in the
context-free language that is specified by the Java grammar.

A regular language is a very limited kind of context free language that can be described by a
regular grammar. A regular language can also be described by a regular expression.

CSc 372, Fall 2006 Ruby, Slide 111
W. H. Mitchell (whm@msweng.com)

A little theory, continued

A regular expression is simply a string that may contain metacharacters. Here is a simple
regular expression:

a+

It specifies the regular language that consists of the strings {a, aa, aaa, ...}.

Here is another regular expression:

(ab)+c*

It describes the set of strings that have ab repeated some number of times followed by zero
or more c's. Some strings in the language are ab, ababc, and ababababccccccc.

The regular expression

(north|south)(east|west)

describes a language with four strings: {northeast, northwest, southeast, southwest}.

CSc 372, Fall 2006 Ruby, Slide 112
W. H. Mitchell (whm@msweng.com)

Good news and bad news

UNIX tools such as the ed editor and grep/fgrep/egrep introduced regular expressions to a
wide audience.

Many languages provide a library for working with regular expressions. Java provides the
java.util.regex package. The command man regex produces some documentation for the C
library's regular expression routines.

Some languages, Ruby included, have a regular expression datatype.

Regular expressions have a sound theoretical basis and are also very practical. Over time,
however, a great number of extensions have been added. In languages like Ruby, regular
expressions are truly a language within a language.

Chapter 22 of the text devotes four pages to its summary of regular expressions. In contrast,
integers, floating point numbers, strings, ranges, arrays, and hashes are summarized in a total
of four pages.

CSc 372, Fall 2006 Ruby, Slide 113
W. H. Mitchell (whm@msweng.com)

Good news and Bad news, continued

Entire books have been written on the subject of regular expressions. A number of tools have
been developed to help programmers create and maintain complex regular expressions.

Here is a regular expression written by Mark Cranness and posted at regexlib.com:

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-\
x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

It describes RFC 2822 email addresses.

The instructor believes that regular expressions have their place but grammar-based parsers
should be considered more often than they are, especially when an underlying specification
includes a grammar.

We'll cover a subset of Ruby's regular expression capabilities.

CSc 372, Fall 2006 Ruby, Slide 114
W. H. Mitchell (whm@msweng.com)

A simple regular expression in Ruby

One way to create a regular expression (RE) in Ruby is to use the /pattern/ syntax:

>> re = /a.b.c/ => /a.b.c/

>> re.class => Regexp

In an RE, a dot is a metacharacter (a character with special meaning) that will match any
(one) character.

Alphanumeric characters and some special characters simply match themselves.

The meaning of a metacharacter can be suppressed by preceding with a backslash.

The RE /a.b.c/ matches strings that contain the five-character sequence
a<anychar>b<anychar>c, like "albacore", "barbecue", "drawback", and

"iambic".

How many strings are in the language specified with the regular expression /a.b.c/?

CSc 372, Fall 2006 Ruby, Slide 115
W. H. Mitchell (whm@msweng.com)

The match operator

The binary operator =~ is called "match". One operand must be a string and the other must
be a regular expression. If the string contains a match for the RE, the position of the match is
returned. nil is returned if there is no match.

>> "albacore" =~ /a.b.c/ => 0

>> /a.b.c/ =~ "drawback" => 2

>> "abc" =~ /a.b.c/ => nil

What does the following loop do?

while line = gets do
 puts line if line =~ /a.b.c/
end

How could we invert the operation of the loop?

Problem: Write a program that prints lines longer than the length specified by a command
line argument. For example, longerthan 80 < x prints the lines in x that are 81 characters or
more in length. (Don't use String#length or size!)

CSc 372, Fall 2006 Ruby, Slide 116
W. H. Mitchell (whm@msweng.com)

The match operator, continued

After a successful match we can use some cryptically named predefined variables to access
parts of the string:

$` Is the portion of the string that precedes the match. (That's a backquote.)
$& Is the portion of the string that was matched by the regular expression.
$' Is the portion of the string following the match.

Example:

>> "limit=300" =~ /=/ => 5

>> $` => "limit"

>> $& => "="

>> $' => "300"

CSc 372, Fall 2006 Ruby, Slide 117
W. H. Mitchell (whm@msweng.com)

The match operator, continued

Here is a handy utility routine from the text:

def show_match(s, re)
 if s =~ re then
 "#{$`}<<#{$&}>>#{$'}"
 else
 "no match"
 end
end

Usage:

>> show_match("limit is 300", /is/) => "limit <<is>> 300"

>> %w{albacore drawback iambic}.each { |w| puts show_match(w, /a.b.c/) }
<<albac>>ore
dr<<awbac>>k
i<<ambic>>

Handy: Put show_match in your ~/.irbrc file. Maybe name it sm.

CSc 372, Fall 2006 Ruby, Slide 118
W. H. Mitchell (whm@msweng.com)

Regular expressions as subscripts

As a subscript, a regular expression specifies the portion of the string, if any, matched by it.

>> s = "testing" => "testing"

>> s[/.../] = "*" => "*"

>> s => "*ting"

Another example:

>> %w{albacore drawback iambic}.map { |w| w[/a.b.c/] = "(a.b.c)"; w }
=> ["(a.b.c)ore", "dr(a.b.c)k", "i(a.b.c)"]

CSc 372, Fall 2006 Ruby, Slide 119
W. H. Mitchell (whm@msweng.com)

Character classes

The pattern [characters] is an RE that matches any one of the specified characters.

[^characters] is an RE that matches any character not in the set. (It matches the complement
of the set.)

A dash between two characters in a set specifies a range based on ASCII codes.

Examples:

/[aeiou]/ matches a string that contains a lower-case vowel
>> show_match("testing", /[aeiou]/)
=> "t<<e>>sting"

/[^0-9]/ matches a string that contains a non-digit
>> show_match("1,000", /[^0-9]/)
=> "1<<,>>000"

/[a-z][0-9][a-z]/ matches strings that somewhere contain the three-character sequence
lowercase letter, digit, lowercase letter.

>> show_match("A1b33s4ax1", /[a-z][0-9][a-z]/)
=> "A1b33<<s4a>>x1"

CSc 372, Fall 2006 Ruby, Slide 120
W. H. Mitchell (whm@msweng.com)

Character classes, continued

Ruby provides abbreviations for some commonly used character classes:

\d Stands for [0-9]
\w Stands for [A-Za-z0-9_]
\s Whitespace—blank, tab, carriage return, newline, formfeed

The abbreviations \D, \W, and \S produce a complemented set for the corresponding class.

Examples:

>> show_match("Call me at 555-1212", /\d\d\d-\d\d\d\d/)
=> "Call me at <<555-1212>>"

>> "fun double(n) = n * 2".gsub(/\w/,".")
=> "...(.) = . * ."

>> "FCS 202, 12:30-13:45 TH".gsub(/\D/, "~")
=> "~~~~202~~12~30~13~45~~~"

gsub's replacement string can be any length, as you'd expect.

CSc 372, Fall 2006 Ruby, Slide 121
W. H. Mitchell (whm@msweng.com)

Alternatives and grouping

Alternatives can be specified with a vertical bar:

>> %w{one two three four}.select { |s| s =~ /two|four|six/ }
=> ["two", "four"]

Parentheses can be used for grouping. Consider this regular expression:

/(two|three) (apple|biscuit)s/

It corresponds to a regular language with four strings:

two apples
three apples
two biscuits
three biscuits

Usage:

>> "I ate two apples." =~ /(two|three) (apple|biscuit)s/ => 6

>> "She ate three mice." =~ /(two|three) (apple|biscuit)s/ => nil

CSc 372, Fall 2006 Ruby, Slide 122
W. H. Mitchell (whm@msweng.com)

Creating regular expressions at run-time

The method Regexp.new(s) creates a regular expression from the string s.

counts = %w{two three four five}
foods = %w{apples oranges bananas}

re = ""; sep = ""
counts.each {
 |count| foods.each {
 |food|

re << sep << count << " " << food
sep = "|"

 }
}
puts re
re = Regexp.new(re)
while line = (printf("Query? "); gets)
 if line =~ re then
 puts "Yes: #{$`}[#{$&}]#{$'}"
 else puts "No"
 end
end

Execution:

% ruby re2.rb
two apples|two oranges|two bananas|three
apples|three oranges|three bananas|four
apples|...

Query? Are there four apples?
Yes: Are there [four apples]?

Query? We sold two bananas.
Yes: We sold [two bananas].

Query? Three oranges were thrown at me!
No

CSc 372, Fall 2006 Ruby, Slide 123
W. H. Mitchell (whm@msweng.com)

Repetition with *, +, and ?

If R is a regular expression, then...

R* matches zero or more occurrences of R.

R+ matches one or more occurrences of R.

R? matches zero or one occurrences of R.

All have higher precedence than juxtaposition.

Examples:

/ab*c/ Matches strings that contain an 'a' that is followed by zero or more 'b's that
are followed by a 'c'. Examples: ac, abc, abbbbbbc, back, and cache.

/-?\d+/ Matches strings that contain an integer. What strings are matched by /-?\d*/?
What would show_match("maybe --123.4e-10 works", /-?\d+/) produce?

/a(12|21|3)*b/
Matches strings like ab, a3b, a312b, and a3123213123333b.

CSc 372, Fall 2006 Ruby, Slide 124
W. H. Mitchell (whm@msweng.com)

Repetition, continued

The operators *, +, and ? are "greedy"—each tries to match the longest string possible, and
cuts back only to make the full expression succeed. Example:

Given a.*b and the input 'abbb', the first attempt is:

a matches a
.* matches bbb
b fails—no characters left!

The matching algorithm then backtracks and does this:

a matches a
.* matches bb
b matches b

CSc 372, Fall 2006 Ruby, Slide 125
W. H. Mitchell (whm@msweng.com)

Repetition, continued

More examples of greed:

>> show_match("xabbbbc", /a.*b/) => "x<<abbbb>>c"

>> show_match("xabbbbc", /ab?b?/) => "x<<abb>>bbc"

>> show_match("xabbbbc", /ab?b?.*c/ => "x<<abbbbc>>"

>> show_match("maybe --123.4e-10 works", /-?\d+/)
=> "maybe -<<-123>>.4e-10 works"

Why are *, +, and ? greedy?

CSc 372, Fall 2006 Ruby, Slide 126
W. H. Mitchell (whm@msweng.com)

Repetition, continued

Describe the strings matched by...

/[a-z]+[0-9]?/
/a...b?c/
/..1.*2../
/..*.+.*./
/((ab)+c?(xyz)*)?/

Specify an RE that matches...

Strings corresponding to ML int lists, like [10], [5,1,~700], and []. Assume there are
no embedded spaces.

Lines that contain only whitespace and a left or right brace.

Strings that match /^[A-Za-z_]\w*$/ commonly occur in programs. What are they?

CSc 372, Fall 2006 Ruby, Slide 127
W. H. Mitchell (whm@msweng.com)

split and scan with regular expressions

It is possible to split a string on a regular expression:

>> " one, two,three / four".split(/[\s,\/]+/) # Note escaped backslash in class
=> ["", "one", "two", "three", "four"]

Unfortunately, leading delimiters produce an empty string in the result.

If we can describe the strings of interest instead of what separates them, scan is a better
choice:

>> "10.0/-1.3...5.700+[1.0,2.3]".scan(/-?\d+\.\d+/)
=> ["10.0", "-1.3", "5.700", "1.0", "2.3"]

Here's a way to keep all the pieces:

>> " one, two,three / four".scan(/(\w+|\W+)/)
=> [[" "], ["one"], [", "], ["two"], [","], ["three"], [" / "], ["four"]]

A list of lists is produced because of the grouping. We'll see a use for this later.

CSc 372, Fall 2006 Ruby, Slide 128
W. H. Mitchell (whm@msweng.com)

Anchors

The metacharacter ^ is an anchor. It doesn't match any characters but it constrains the
following regular expression to appear at the beginning of the string being matched against.

Another anchor is $. It constrains the preceding regular expression to appear at the end of
the string.

 $ grep.rb ^bucket < $words
bucket
bucketed
bucketeer

$ grep.rb bucket$ < $words
bucket
gutbucket
trebucket

Problems:
Specify an RE that will match words that are at least six characters long, start with an
'a', and end with a 'z'.

Count the number of empty lines in x.rb. (Yes, you can't use String#size!)

CSc 372, Fall 2006 Ruby, Slide 129
W. H. Mitchell (whm@msweng.com)

Groups and references

In addition to providing a way to override precedence rules, parentheses create references
(also called back references) to the text matched by a group.

Here is a regular expression that matches strings consisting of digits where the first and last
digit are the same:

/^(\d)\d*\1$/

Piece by piece:

^ Require the following RE to be at the beginning of the string.

(\d) Match one digit and retain it as the text of "group 1".

\d* Match zero or more digits.

\1 The text of group 1.

$ Require the preceding RE to be at the end of the string.

CSc 372, Fall 2006 Ruby, Slide 130
W. H. Mitchell (whm@msweng.com)

Groups and references, continued

For reference:

/^(\d)\d*\1$/

Usage:

>> show_match("121", /^(\d)\d*\1$/) => "<<121>>"

>> show_match("12", /^(\d)\d*\1$/) => "no match"

>> show_match("3013", /^(\d)\d*\1$/) => "<<3013>>"

>> show_match("3", /^(\d)\d*\1$/) => "no match"

A little fun:

>> (1000..2000).select { |n| (7**n).to_s =~ /^(\d)\d*\1$/ }
=> [1000, 1012, 1020, 1021, 1023, 1032, 1044, 1046, 1052, 1053, 1055, 1064, 1075,
1084, 1096, 1107, 1116, 1128, 1130, 1136, 1137, 1139, 1148, 1168, 1180, 1191,
1200, 1212, 1220, 1221, 1223, 1232, 1246, 1252, 1255, 1264, 1275, 1284, ...]

CSc 372, Fall 2006 Ruby, Slide 131
W. H. Mitchell (whm@msweng.com)

Groups and references, continued

In addition to setting $`, $&, and $', a successful match also sets $1, $2, ..., $9 to the text of
the corresponding group.

Strictly to illustrate the mechanism, here is a method that swaps the first three and last
characters of a string:

def swap3(s)
 if s =~ /(...)(.*)(...)/ then
 "#{$3}#{$2}#{$1}"
 else
 s
 end
end

Usage:

>> swap3 "abc-def" => "def-abc"
>> swap3 "aaabbb" => "bbbaaa"
>> swap3 "abcd" => "abcd"

In actual practice what's a better way to perform this computation?

CSc 372, Fall 2006 Ruby, Slide 132
W. H. Mitchell (whm@msweng.com)

Groups and references, continued

As a more practical example, here is a method that rewrites infix operators as function calls:

$ops = { "-" => "sub", "+" => "add", "mul" => "mul", "div" => "div" } # global variable
def infix_to_function(line)
 if line =~ /^(\w+)\s*(([-+]|(mul|div)))\s*(\w+)$/ then
 fcn = $ops[$2]
 return "#{fcn}(#{$1},#{$5})"
 else
 return nil
 end
end

Usage:

>> infix_to_function("3 + 4") => "add(3,4)"

>> infix_to_function("limit-1500") => "sub(limit,1500)"

>> infix_to_function("10mul20") => "mul(10,20)"

Could we generate the regular expression from the hash? Do we really need a character class
or would just alternation suffice?

CSc 372, Fall 2006 Ruby, Slide 133
W. H. Mitchell (whm@msweng.com)

Groups and references, continued

If the argument to scan has one or more groups, a list of lists is produced:

>> "1:2 33:28 100:7".scan(/(\d+):(\d+)/)
=> [["1", "2"], ["33", "28"], ["100", "7"]]

>> "1234567890".scan(/(.)(.)(.)/)
=> [["1", "2", "3"], ["4", "5", "6"], ["7", "8", "9"]]

Recall this example:

>> " one, two,three / four".scan(/(\w+|\W+)/)
=> [[" "], ["one"], [", "], ["two"], [","], ["three"], [" / "], ["four"]]

CSc 372, Fall 2006 Ruby, Slide 134
W. H. Mitchell (whm@msweng.com)

Iteration with gsub

Recall String#gsub:

>> "fun double(n) = n * 2".gsub(/\w/,".")
=> "...(.) = . * ."

gsub has a one argument form that is an iterator. The result of the block is substituted for
the match.

Here is a method that augments a string with a running sum of the numbers it contains:

def running_sums(s)
 sum = 0
 s.gsub(/\d+/) {
 sum += $&.to_i
 $& + "(%d)" % sum
 }
end

Usage:
>> running_sum("1 pencil, 3 erasers, 2 pens")
=> "1(1) pencil, 3(4) erasers, 2(6) pens"

CSc 372, Fall 2006 Ruby, Slide 135
W. H. Mitchell (whm@msweng.com)

Application: Time totaling

Consider an application that reads elapsed times on standard input and prints their total:

% ttl.rb
3h
15m
4:30
^D
7:45

Multiple times can be specified per line:

% ruby ttl.rb
10m, 20m
3:30 2:15 1:01
^D
7:16

Times in an unexpected format are ignored:
% ttl.rb
10 2:90
What's 10? Ignored...
What's 2:90? Ignored...

CSc 372, Fall 2006 Ruby, Slide 136
W. H. Mitchell (whm@msweng.com)

Time totaling, continued

def main
 mins = 0
 while line = gets do
 line.scan(/[^\s,]+/).each {|time| mins += parse_time(time) }
 end
 printf("%d:%02d\n", mins / 60, mins % 60)
end

def parse_time(s)
 case
 when s =~ /^(\d+):([0-5]\d)$/
 $1.to_i * 60 + $2.to_i
 when s =~ /^(\d+)([hm])$/
 if $2 == "h" then $1.to_i * 60
 else $1.to_i end
 else
 print("What's #{s}? Ignored...\n"); 0
 end
end
main

CSc 372, Fall 2006 Ruby, Slide 137
W. H. Mitchell (whm@msweng.com)

Class definition

Counter: A tally counter

An interesting thing about instance variables

Addition of methods

An interesting thing about class defintions

Sidebar: Fun with eval

Class variables and methods

A little bit on access control

Getters and setters

CSc 372, Fall 2006 Ruby, Slide 138
W. H. Mitchell (whm@msweng.com)

A tally counter

Imagine a class named Counter that models a tally counter.

Here's how we might create and interact with an instance of
Counter:

c1 = Counter.new
c1.click
c1.click
puts c1 # Output: Counter's count is 2
c1.reset

c2 = Counter.new "c2"
c2.click
puts c2 # Output: c2's count is 1

c2.click
printf("c2 = %d\n", c2.count) # Output: c2 = 2

CSc 372, Fall 2006 Ruby, Slide 139
W. H. Mitchell (whm@msweng.com)

Counter, continued

Here is a partial implementation of Counter:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

The reserved word class begins a class definition; a corresponding end terminates it. A
class name must begin with a capital letter.

The method name initialize is special. It identifies the method that is called when the method
new is invoked:

c1 = Counter.new

c2 = Counter.new "c2"

If no argument is supplied to new, the default value of "Counter" is used.

Obviously, initialize is the counterpart to a constructor in Java.

CSc 372, Fall 2006 Ruby, Slide 140
W. H. Mitchell (whm@msweng.com)

Counter, continued

For reference:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

The constructor initializes two instance variables: @count and @label.

Instance variables are identified by prefixing them with @.

An instance variable comes into existence when a value is assigned to it.

Just like Java, each object has its own copy of instance variables.

Unlike variables local to a method, instance variables have a default value of nil.

CSc 372, Fall 2006 Ruby, Slide 141
W. H. Mitchell (whm@msweng.com)

Counter, continued

For reference:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

When irb displays an object, the instance variables are shown:

>> a = Counter.new "a"
=> #<Counter:0x2c61eb4 @label="a", @count=0>

>> b = Counter.new
=> #<Counter:0x2c4da04 @label="Counter", @count=0>

>> [a,b]
=> [#<Counter:0x2c61eb4 @label="a", @count=0>,
 #<Counter:0x2c4da04 @label="Counter", @count=0>]

CSc 372, Fall 2006 Ruby, Slide 142
W. H. Mitchell (whm@msweng.com)

Counter, continued

Here's the full source:

class Counter
 def initialize(label = "Counter")
 @count = 0; @label = label
 end
 def click
 @count += 1
 end
 def reset
 @count = 0
 end
 def count # Note the convention: count, not get_count
 @count
 end
 def to_s
 return "#{@label}'s count is #{@count}"
 end
end

A very common error is to omit the @ on a reference to an instance variable.

CSc 372, Fall 2006 Ruby, Slide 143
W. H. Mitchell (whm@msweng.com)

An interesting thing about instance variables

Consider this class:

class X
 def initialize(n)
 case n
 when 1 then @x = 1
 when 2 then @y = 1
 when 3 then @x = @y = 1
 end
 end
end

What's interesting about the following?

>> X.new 1 => #<X:0x2c26a44 @x=1>

>> X.new 2 => #<X:0x2c257d4 @y=1>

>> X.new 3 => #<X:0x2c24578 @x=1, @y=1>

CSc 372, Fall 2006 Ruby, Slide 144
W. H. Mitchell (whm@msweng.com)

Addition of methods

In Ruby, a method can be added to a class without changing the source code for the class. In
the example below we add a label method to Counter, to fetch the value of the instance
variable @label.

>> c = Counter.new "ctr 1"
=> #<Counter:0x2c26bac @label="ctr 1", @count=0>

>> c.label
NoMethodError: undefined method `label' for #<Counter:0x2c26bac @label="ctr 1",
@count=0>
 from (irb):4
>> class Counter
>> def label
>> @label
>> end
>> end
=> nil

>> c.label
=> "ctr 1"

What are the implications of this capability?

CSc 372, Fall 2006 Ruby, Slide 145
W. H. Mitchell (whm@msweng.com)

Addition of methods, continued

We can add methods to built-in classes!

% cat hexstr.rb
class Fixnum
 def hexstr
 return "%x" % self
 end
end

Usage:

>> load "hexstr.rb" => true

>> 15.hexstr => "f"

>> p (10..20).collect { |n| n.hexstr }
["a", "b", "c", "d", "e", "f", "10", "11", "12", "13", "14"]
=> nil

CSc 372, Fall 2006 Ruby, Slide 146
W. H. Mitchell (whm@msweng.com)

An interesting thing about class definitions

Observe the following. What does it suggest to you?

>> class X
>> end
=> nil

>> p (class X; end)
nil
=> nil

>> class X; puts "here"; end
here
=> nil

CSc 372, Fall 2006 Ruby, Slide 147
W. H. Mitchell (whm@msweng.com)

Class definitions are executable code

In fact, a class definition is executable code. Consider the following, which uses a case
statement to selectively execute defs for methods.

class X
 print "What methods would you like? "
 methods = gets.chomp
 methods.each_byte { |c|
 case c
 when ?f then def f; "from f" end
 when ?g then def g; "from g" end
 when ?h then def h; "from h" end
 end
 }
end

Execution:

What methods would you like? fg
>> c = X.new => #<X:0x2c2a1e4>
>> c.f => "from f"
>> c.h
NoMethodError: undefined method `h' for #<X:0x2c2a1e4>

CSc 372, Fall 2006 Ruby, Slide 148
W. H. Mitchell (whm@msweng.com)

Sidebar: Fun with eval

Kernel#eval parses a string containing Ruby source code and executes it.

>> s = "abc" => "abc"

>> n = 3 => 3

>> eval "x = s * n" => "abcabcabc"

>> x => "abcabcabc"

>> eval "x[2..-2].length" => 6

>> eval gets
s.reverse

=> "cba"

Look carefully at the above. Note that eval uses variables from the current environment and
that an assignment to x is reflected in the environment.

Bottom line: A Ruby program can generate code for itself.

CSc 372, Fall 2006 Ruby, Slide 149
W. H. Mitchell (whm@msweng.com)

Sidebar, continued

Problem: Create a file new_method.rb with a class X that prompts the user for a method
name, parameters, and method body. It then creates that method. Repeat.

>> load "new_method.rb"
What method would you like? add
Parameters? a, b
What shall it do? a + b
Method add(a, b) added to class X

What method would you like? last
Parameters? a
What shall it do? a[-1]
Method last(a) added to class X

What method would you like? ^D

>> c = X.new => #<X:0x2c2980c>

>> c.add(3,4) => 7

>> c.last [1,2,3] => 3

CSc 372, Fall 2006 Ruby, Slide 150
W. H. Mitchell (whm@msweng.com)

Sidebar, continued

Solution:

class X
 while true
 print "What method would you like? "
 name = gets || break
 name.chomp!

 print "Parameters? "
 params = gets.chomp

 print "What shall it do? "
 body = gets.chomp

 code = "def #{name} #{params}; #{body}; end"

 eval(code)
 print("Method #{name}(#{params}) added to class #{self}\n\n");
 end
end

Is this a useful capability or simply fun to play with?

CSc 372, Fall 2006 Ruby, Slide 151
W. H. Mitchell (whm@msweng.com)

Class variables and methods

Just as Java, Ruby provides a way to associate data and methods with a class itself rather than
each instance of a class.

Java uses the static keyword to denote a class variable.

In Ruby a variable prefixed with two at-signs is a class variable.

Here is Counter augmented with a class variable that keeps track of how many counters have
been created:

class Counter
 @@created = 0 # Must precede any use of @@created

 def initialize(label = "Counter")
 @count = 0; @label = label
 @@created += 1
 end

end

Note: Unaffected methods are not shown.

CSc 372, Fall 2006 Ruby, Slide 152
W. H. Mitchell (whm@msweng.com)

Class variables and methods, continued

To define a class method, simply prefix the method name with the name of the class:

class Counter
 @@created = 0

 ... other methods ...

 def Counter.created # class method
 return @@created
 end
end

Usage:

>> Counter.created => 0
>> c = Counter.new => #<Counter:0x... @label="Counter", @count=0>
>> Counter.created => 1
>> 5.times { Counter.new } => 5
>> Counter.created => 6

CSc 372, Fall 2006 Ruby, Slide 153
W. H. Mitchell (whm@msweng.com)

A little bit on access control

By default, methods are public. If private appears on a line by itself, subsequent methods in
the class are private.

class X
 def f; puts "in f"; g end # Note: calls g

 private
 def g; puts "in g" end
end

>> x = X.new => #<X:0x2c0cc84>
>> x.f
in f
in g

>> x.g
NoMethodError: private method `g' called for #<X:0x2c0cc84>

In Ruby, there is simply no such thing as a public class variable or public instance variable.
All access must be through methods.

CSc 372, Fall 2006 Ruby, Slide 154
W. H. Mitchell (whm@msweng.com)

Getters and setters

If Counter were in Java, we might provide methods like void setCount(int n) and int
getCount().

In Counter we provide a method called count to fetch the count.

Instead of something like setCount, we'd do this:

def count= n # IMPORTANT: Note the trailing '='
 print("count=(#{n}) called\n")
 @count = n unless n < 0
end

Usage:

>> c = Counter.new => #<Counter:0x2c94094 @label="Counter", @count=0>

>> c.count = 10
count=(10) called

>> c => #<Counter:0x2c94094 @label="Counter", @count=10>

CSc 372, Fall 2006 Ruby, Slide 155
W. H. Mitchell (whm@msweng.com)

Getters and setters, continued

Here's class to represent points on a 2d Cartesian plane:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 def x; @x end
 def y; @y end
end

Usage:

>> p1 = Point.new(3,4) => #<Point:0x2c72c78 @x=3, @y=4>

>> [p1.x, p1.y] => [3, 4]

It can be tedious and error prone to write a number of simple getter methods, like Point#x
and Point#y.

CSc 372, Fall 2006 Ruby, Slide 156
W. H. Mitchell (whm@msweng.com)

Getters and setters, continued

The method attr_reader creates getter methods. Here's an equivalent definition of Point:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 attr_reader :x, :y # :x and :y are Symbols. (But "x" and "y" work, too!)
end

Usage:

>> p = Point.new(3,4) => #<Point:0x2c25478 @x=3, @y=4>

>> p.x => 3

>> p.y => 4

>> p.x = 10
NoMethodError: undefined method `x=' for #<Point:0x2c29924 @y=4, @x=3>

Why does p.x = 10 fail?

CSc 372, Fall 2006 Ruby, Slide 157
W. H. Mitchell (whm@msweng.com)

Getters and setters, continued

If you want both getters and setters, use attr_accessor:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end

 attr_accessor :x, :y
end

Usage:

>> p = Point.new(3,4) => #<Point:0x2c298d4 @y=4, @x=3>
>> p.x => 3
>> p.y = -20 => -20
>> p => #<Point:0x2c298d4 @y=-20, @x=3>

It's important to appreciate that attr_reader and attr_accessor are methods that create
methods. We could define a method called getters that has the same effect as attr_reader.

CSc 372, Fall 2006 Ruby, Slide 158
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Ruby, Slide 159
W. H. Mitchell (whm@msweng.com)

Operator overloading

NOTE: This is a replacement set. Please discard the two-sheet handout that has Ruby
slides 159-167.

CSc 372, Fall 2006 Ruby, Slide 160
W. H. Mitchell (whm@msweng.com)

Operators as methods

It is possible to express most operators as method calls. Here are some examples:

>> 3.+(4) => 7

>> "abc".*(2) => "abcabc"

>> "testing".[](2) => 115

>> "testing".[](2,3) => "sti"

>> 10.==20 => false

In general, expr1 op expr2 can be written as expr1.op expr2

Unary operators require a little more syntax:

>> 5.-@() => -5

Problem: What are some binary operations that can't be expressed as a method call in Ruby?

CSc 372, Fall 2006 Ruby, Slide 161
W. H. Mitchell (whm@msweng.com)

Operator overloading

In most languages at least a few operators are "overloaded"—an operator stands for more
than one operation.

Examples:

C: + is used to express addition of integers, floating point numbers, and
pointer/integer pairs.

Java: + is used to express addition and string concatenation.

Icon: *x produces the number of...
characters in a string
values in a list
key/value pairs in a table
results a "co-expression" has produced
and more...

What are examples of overloading in Ruby? In ML?

CSc 372, Fall 2006 Ruby, Slide 162
W. H. Mitchell (whm@msweng.com)

Operator overloading, continued

As a simple vehicle to study overloading in Ruby, imagine a dimensions-only rectangle:

class Rectangle
 def initialize(w,h); @width = w; @height =h; end
 def area; @width * @height; end
 attr_reader :width, :height

 def inspect
 "%g x %g Rectangle" % [@width, @height]
 end
end

Usage:

>> r = Rectangle.new(3,4) => 3 x 4 Rectangle

>> r.area => 12

>> r.width => 3

Note that an inspect method is supplied to produce a more concise representation in irb.

CSc 372, Fall 2006 Ruby, Slide 163
W. H. Mitchell (whm@msweng.com)

Operator overloading, continued

Let's imagine that we can compute the "sum" of two rectangles:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = Rectangle.new(5,6) => 5 x 6 Rectangle

>> a + b => 8 x 10 Rectangle

>> c = a + b + b => 13 x 16 Rectangle

>> (a + b + c).area => 546

As shown above, what does Rectangle + Rectangle mean?

CSc 372, Fall 2006 Ruby, Slide 164
W. H. Mitchell (whm@msweng.com)

Operator overloading, continued

Our vision:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle
>> b = Rectangle.new(5,6) => 5 x 6 Rectangle
>> a + b => 8 x 10 Rectangle

Here's how to make it so:

class Rectangle
 def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)
 end
end

Remember that a + b is equivalent to a.+(b). We are invoking the method "+" on a and
passing it b as a parameter. The parameter name, rhs, stands for "right-hand side".

Instead of the above, would the following work? Would it be better in some cases?

Rectangle.new(@width + rhs.width, @height + rhs.height)

CSc 372, Fall 2006 Ruby, Slide 165
W. H. Mitchell (whm@msweng.com)

Operator overloading, continued

For reference:

 def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)
 end

Here is a faulty implementation, and usage of it:

def + rhs
 @width += rhs.width; @height += rhs.height
end

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = Rectangle.new(5,6) => 5 x 6 Rectangle

>> a+b => 10

>> a => 8 x 10 Rectangle

What's the problem?

CSc 372, Fall 2006 Ruby, Slide 166
W. H. Mitchell (whm@msweng.com)

Operator overloading, continued

Just like with regular methods, we have complete freedom to define what's meant by an
expression using an overloaded operator. For example, a traditionally applicative operator
can be turned into an imperative operation.

Here is a method for Rectangle that defines unary minus to be an imperative "rotation":

def -@ # Note: '-@' is used instead of just '-' to distinguish the unary form
 @width, @height = @height, @width # "parallel assignment" to swap
 self
end

>> a = Rectangle.new(2,5) => 2 x 5 Rectangle

>> a => 2 x 5 Rectangle

>> -a => 5 x 2 Rectangle

>> a + -a => 4 x 10 Rectangle

>> a => 2 x 5 Rectangle

Any surprises?

CSc 372, Fall 2006 Ruby, Slide 167
W. H. Mitchell (whm@msweng.com)

Operator overloading, continued

Consider "scaling" a rectangle by some factor. Example:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = a * 5 => 15 x 20 Rectangle

>> c = b * 0.77 => 11.55 x 15.4 Rectangle

Implementation:

def * rhs
 Rectangle.new(self.width * rhs, self.height * rhs)
end

A problem:

>> a => 3 x 4 Rectangle

>> 3 * a
TypeError: Rectangle can't be coerced into Fixnum

What's wrong?

CSc 372, Fall 2006 Ruby, Slide 168
W. H. Mitchell (whm@msweng.com)

Operator overloading, continued

Imagine a case where it is useful to reference width and height uniformly, via subscripts:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> a[0] => 3

>> a[1] => 4

>> a[2] ArgumentError: out of bounds

Remember that a[0] is a.[](0).

Implementation:

def [] n
 case n
 when 0 then width
 when 1 then height
 else raise ArgumentError.new("out of bounds") # Exception!
 end
end

CSc 372, Fall 2006 Ruby, Slide 169
W. H. Mitchell (whm@msweng.com)

Ruby is mutable

The ability to define meaning for operations like Rectangle + Rectangle leads us to say
that Ruby is extensible.

But Ruby is not only extensible, it is also mutable—we can change the meaning of
expressions.

For example, if we wanted to be sure that a program never used integer addition or negation,
we could do this:

class Fixnum
 def + x
 raise "boom!"
 end
 def -@
 raise "boom!"
 end
end

In contrast, C++ is extensible, but not mutable. In C++, for example, you can define the
meaning of Rectangle * int but you can't change the meaning of integer addition, as we do
above.

CSc 372, Fall 2006 Ruby, Slide 170
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Ruby, Slide 171
W. H. Mitchell (whm@msweng.com)

Inheritance

Inheritance in Ruby

Java vs. Ruby

Modules and mixins

More to come on inheritance...

CSc 372, Fall 2006 Ruby, Slide 172
W. H. Mitchell (whm@msweng.com)

Inheritance in Ruby

A simple example of inheritance can be seen with clocks and alarm clocks. An alarm clock
is a clock with a little bit more. Here are trivial models of them in Ruby:

class Clock
 def initialize time
 @time = time
 end
 attr_reader :time
end

class AlarmClock < Clock
 attr_accessor :alarm_time
 def initialize time
 super(time)
 end
 def on; @on = true end
 def off; @on = false end
end

The less-than symbol specifies that AlarmClock is a subclass of Clock.

Just like Java, a call to super is used to pass arguments to the superclass constructor.

Ruby supports only single inheritance but "mixins" provide a solution for most situations
where multiple inheritance is useful. (More on mixins later.)

CSc 372, Fall 2006 Ruby, Slide 173
W. H. Mitchell (whm@msweng.com)

Inheritance, continued

Usage is not much of a surprise:

>> c = Clock.new("12:00") => #<Clock:0x2c44198 @time="12:00">

>> c.time => "12:00"

>> ac = AlarmClock.new("12:00") => #<AlarmClock:... @time="12:00">

>> ac.time => "12:00"

>> ac.alarm_time = "8:00" => "8:00"

>> ac.on => true

>> ac
=> #<AlarmClock:0x2c30c38 @on=true, @time="12:00", @alarm_time="8:00">

Note that AlarmClock's @on and @alarm_time attributes do not appear until they are set.

To keep things simple, times are represented with strings.

CSc 372, Fall 2006 Ruby, Slide 174
W. H. Mitchell (whm@msweng.com)

Inheritance, continued

The method alarm_battery creates a "battery" of num_clocks AlarmClocks. The first is
set for whenn. The others are set for intervals of interval minutes.

def alarm_battery(whenn, num_clocks, interval)
 battery = []
 num_clocks.times {
 c = AlarmClock.new("now") # Imagine this works
 c.alarm_time = whenn
 whenn = add_time(whenn, interval) # Imagine this method
 battery << c
 }
 battery
end

Usage:

>> battery = alarm_battery("8:00", 10, 5) => Array with ten AlarmClocks

>> battery.size => 10
>> p battery[2]
#<AlarmClock:0x2c19d94 @alarm_time="8:10", @time="22:06">

CSc 372, Fall 2006 Ruby, Slide 175
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby

Here is a Ruby method to activate all the alarms in a battery:

def activate_alarms(clocks)
 for ac in clocks
 ac.on
 end
end

Here is an analog in Java:

static void activate_alarms (ArrayList<AlarmClock> clocks) {
 for (AlarmClock ac: clocks)
 ac.on();
 }

Is there a practical difference between the two? Or are these just two ways to express the
same computation?

CSc 372, Fall 2006 Ruby, Slide 176
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby, continued

Another group has developed a WeatherClock. It is essentially an alarm clock but lets the
user specify adjustments based on the weather. You might want be awakened earlier than
normal if it is snowy, to provide time to shovel out the car. Here is WeatherClock, in Java:

class WeatherClock extends Clock {
 public void on() ...
 public void addCondition(WeatherCondition c, AlarmAdjustment a) ...
 ...
 }

We'd like to add a WeatherClock to our alarm battery,

ArrayList<AlarmClock> battery = alarm_battery(...) // Java
WeatherClock wc = new WeatherClock(...);
battery.add(wc); # line 31

but there is a problem:
clock.java:31: cannot find symbol 'method add(WeatherClock)'
location: class java.util.ArrayList<AlarmClock>
 battery.add(wc);

What's wrong? How can we fix it?

CSc 372, Fall 2006 Ruby, Slide 177
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby, continued

At hand:

ArrayList<AlarmClock> battery = alarm_battery(...)
WeatherClock wc = new WeatherClock(...);
battery.add(wc); # line 31

clock.java:31: cannot find symbol 'method add(WeatherClock)'

Recall WeatherClock:

class WeatherClock extends Clock { ... }

Because WeatherClock is a Clock not an AlarmClock, we can't put it in an ArrayList of
AlarmClock.

How about relaxing the types? Can we use ArrayList battery instead of
ArrayList<AlarmClock> battery? That is, just have battery hold Objects instead of
AlarmClocks?

CSc 372, Fall 2006 Ruby, Slide 178
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby, continued

Excerpts from an Object-based version:

ArrayList battery = alarm_battery(...); # Holds instances of Object
WeatherClock wc = new WeatherClock(...);
battery.add(wc); # OK: WeatherClock is-a Object
activate_alarms(battery);

and...

static void activate_alarms(ArrayList clocks) {
 for (Object o: clocks) {
 AlarmClock ac = (AlarmClock)o; # line 24
 ac.on();
 }
 }

Result:

Exception in thread "main" java.lang.ClassCastException: WeatherClock
 at clock2.activate_alarms(clock2.java:24)

Now what's wrong? Does this call for a design pattern?

CSc 372, Fall 2006 Ruby, Slide 179
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby, continued

In Ruby, things are simpler:

class WeatherClock < Clock # Just like the Java version, WeatherClock is-a Clock
 ... # not an AlarmClock.
 def on; ... end
end

and...

def activate_alarms(clocks)
 for ac in clocks
 ac.on
 end
end

and...

battery = alarm_battery("8:00", 10, 5)
battery << WeatherClock.new(...)
activate_alarms(battery)

It works! (How?!)

CSc 372, Fall 2006 Ruby, Slide 180
W. H. Mitchell (whm@msweng.com)

This is yet another set of replacements.

The following slides supersede slides 180-184 in the set of 159-184 that was distributed on
October 19.

CSc 372, Fall 2006 Ruby, Slide 181
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby, continued

At hand:

def activate_alarms(clocks)
 for ac in clocks
 ac.on
 end
end

battery = alarm_battery("8:00", 10, 5)

battery << WeatherClock.new("x")

activate_alarms(battery)

Do we really need activate_alarms?

CSc 372, Fall 2006 Ruby, Slide 182
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby, continued

activate_alarms simply invokes the on method of each element in an array. Here's another
way to do the same thing:

battery.each {|c| c.on }

Things work nicely because although the misguided WeatherClock folks don't consider their
invention to be an AlarmClock, they did happen to choose "on" as the name of the method to
activate it.

What could we do if instead of naming it "on" they had named it "activate"?

CSc 372, Fall 2006 Ruby, Slide 183
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby, continued

Option 1: Add an on method to WeatherClock:

class WeatherClock
 def on
 activate
 end
end

However, if they've frozen it with WeatherClock.freeze, we'll see this:

TypeError: can't modify frozen class

Now what?

CSc 372, Fall 2006 Ruby, Slide 184
W. H. Mitchell (whm@msweng.com)

Inheritance: Java vs. Ruby, continued

Option 2: Borrow a little bit from the ADAPTER design pattern:

class AdaptedWeatherClock < WeatherClock
 def on
 activate
 end
end

battery = alarm_battery("8:00", 10, 5)

battery << AdaptedWeatherClock.new("x")

battery.each {|c| c.on }

Fact: Much of the complexity in some OO design patterns rises from accommodation of
compile-time type checking.

CSc 372, Fall 2006 Ruby, Slide 185
W. H. Mitchell (whm@msweng.com)

interface in Java

Question:
What capability is provided by Java's interface construct?

One answer:
An interface specifies a set of operations that must be provided by every class that
implements the interface. In turn, it can be determined at compile time whether a class
claiming to implement the interface provides all the required methods.

For example, if a Java class wants to implement Iterable, it must provide a method called
iterator. iterator must return an instance of a class that implements Iterator that in turn must
provide hasNext, next, and remove methods.

Challenge: Keeping track of the time you spend, create a Java class X such that this code,

X x = new X();
for (Object o: x)
 System.out.println(o);

produces this output: x

CSc 372, Fall 2006 Ruby, Slide 186
W. H. Mitchell (whm@msweng.com)

Sidebar: const methods and in C++

In C++ a method can be declared as const, which indicates that the method won't change the
value of any instance variables. For example, getting the length of a list shouldn't cause a
change in the list, right? In C++ we'd say this:

class IntList {
 public:
 void addValue(int value) { ... }

int get() { ...removes the first element and returns it...}
 int getLength() const { ... }
 ...
 };

const can be applied to a parameters to indicate that the parameter should not be modified:

void f(const IntList& ilist) // w/o const, this is like f(IntList ilist) in Java
{
 int len = ilist.getLength(); // OK

 ilist.addValue(7); // compilation error — ilist is const
}

Question: Is there a situation where getLength() might want to change a value?

CSc 372, Fall 2006 Ruby, Slide 187
W. H. Mitchell (whm@msweng.com)

Sidebar, continued

Here is C++ code inspired by actual events at one of Tucson's largest software companies:

void printInts(const IntList& ilist)
{
 for (int i = 0; i < ilist.getLength(); i++) {
 cout << ilist.get() << endl;
 }
}

Judicious use of const can catch bugs at compile time. Is the complexity it adds worth the
benefit?

It is common for self-taught adopters of C++ to not see the value of const at first. When
they do see the light, they then have a "const Day" to convert all the code over to using
const. (As a rule you need to use const everywhere or nowhere; a mix usually doesn't
work.)

CSc 372, Fall 2006 Ruby, Slide 188
W. H. Mitchell (whm@msweng.com)

A Big Question

Java's compile-time type checking can ensure that we won't have a run-time error because we
forgot a method. Ruby doesn't provide that assurance. Example:

% cat iter3.rb
class X; end

for o in X.new # Recall that 'for' expects the "in" value to respond to 'each'
 puts o
end

% ruby iter3.rb
iter3.rb:3: undefined method `each' for #<X:0x2838618> (NoMethodError)

The fix:

class X
 def each
 yield "x"
 end
end

CSc 372, Fall 2006 Ruby, Slide 189
W. H. Mitchell (whm@msweng.com)

A Big Question, continued

Big Question:
Does the benefit of detecting missing methods at compile time outweigh the extra code
and complexity required to allow that compile-time detection?

When would a forgotten each method most likely turn up in a Ruby application? In
development? In testing? In production?

With a non-trivial iterator in mind, which is harder: remembering to write each or getting the
iteration correct? Would there be tests focused on the operation of the iterator?

What does Test Driven Development add to the question?

You might think of statically-typed languages as offering a deal: "If you'll follow these rules
I'll be able to detect certain types of errors when the program is compiled."

How does the execution model of a language change this question? For example, is compile-
time type-checking as important in Java or Ruby as it is in C or C++?

Consider this: Before generics were added to Java, lots of successful systems were developed
using Hashtable and Vector with extensive use of downcasts, like x = (X)v.get(i). Lots of
Java shops are still not using generics.

CSc 372, Fall 2006 Ruby, Slide 190
W. H. Mitchell (whm@msweng.com)

http://www.madbean.com/anim/jarwars

CSc 372, Fall 2006 Ruby, Slide 191
W. H. Mitchell (whm@msweng.com)

Modules

A Ruby module can be used to group related methods for organizational purposes.

Imagine a collection of methods to comfort a homesick ML programmer at Camp Ruby:

module ML
 def ML.hd a
 a[0]
 end
 def ML.drop a, n
 a[n..-1]
 end
 ...more...
end

>> a = [10, "twenty", 30, 40.0] => [10, "twenty", 30, 40.0]

>> ML.hd(a) => 10

>> ML.drop(a, 2) => [30, 40.0]

>> ML.tl(ML.tl(ML.tl(a))) => [40.0]

CSc 372, Fall 2006 Ruby, Slide 192
W. H. Mitchell (whm@msweng.com)

Modules as "mixins"

In addition to providing a way to group related methods, a module can be "included" in a
class. When a module is used in this way it is called a "mixin" because it mixes additional
functionality into a class.

Here is a revised version of the ML module:

module ML
 def hd; self[0]; end

 def tl; self[1..-1]; end

 def drop n; self[n..-1]; end

 def take n; self[0,n]; end
end

Note that these methods have one less parameter, operating on self instead of the parameter
a. For comparison, here's the first version of tl:

def ML.tl a
 a[1..-1]
end

CSc 372, Fall 2006 Ruby, Slide 193
W. H. Mitchell (whm@msweng.com)

Mixins, continued

We can mix our ML methods into the Array class like this:

require 'ML' # loads ML.rb if not already loaded
class Array
 include ML
end

After loading the above code, we can use those ML methods on arrays:

>> ints = (1..10).to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.hd => 1

>> ints.tl => [2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.drop 3 => [4, 5, 6, 7, 8, 9, 10]

How could we add these same capabilities to the String class?

CSc 372, Fall 2006 Ruby, Slide 194
W. H. Mitchell (whm@msweng.com)

Mixins, continued

An include is all we need to add the same capabilities to String:

require 'ML'
class String
 include ML
end

>> s = "testing" => "testing"

>> s.tl => "esting"

>> s.hd => 116 # How could we get "t" instead?

>> s.drop 5 => "ng"

Does Java have any sort of mixin capability? What would be required to produce a
comparable effect?

In addition to the include mechanism, what other aspect of Ruby facilitates mixins?

CSc 372, Fall 2006 Ruby, Slide 195
W. H. Mitchell (whm@msweng.com)

Modules and superclasses

The Ruby library makes extensive use of mixins.

The class method ancestors can be used to see the superclasses and modules that contribute
methods to a class:

>> Array.ancestors => [Array, Enumerable, Object, Kernel]

>> Fixnum.ancestors => [Fixnum, Integer, Precision, Numeric, Comparable,
Object, Kernel]

The method included_modules shows the modules that a class includes.
instance_methods can be used to see what methods are in a module:

>> Array.included_modules => [Enumerable, Kernel]

>> Enumerable.instance_methods
=> ["collect", "detect", "max", "sort", "partition", "any?", "reject", "zip", "find", "min",
"member?", "entries", "inject", "all?", "select", "each_with_index", "grep", "to_a",
"map", "include?", "find_all", "sort_by"]

>> Comparable.instance_methods => ["==", ">=", "<", "<=", "between?", ">"]

CSc 372, Fall 2006 Ruby, Slide 196
W. H. Mitchell (whm@msweng.com)

Modules and superclasses, continued

All classes include Kernel. If no superclass is specified, a class subclasses Object.

Example:

>> class X; end => nil

>> X.ancestors => [X, Object, Kernel]

>> X.included_modules => [Kernel]

>> X.superclass => Object

CSc 372, Fall 2006 Ruby, Slide 197
W. H. Mitchell (whm@msweng.com)

The Enumerable module

Some Ruby modules provide a collection of methods implemented in terms of a single
operation. One such module is Enumerable:

>> Enumerable.instance_methods.sort
=> ["all?", "any?", "collect", "detect", "each_with_index", "entries", "find", "find_all",
"grep", "include?", "inject", "map", "max", "member?", "min", "partition", "reject",
"select", "sort", "sort_by", "to_a", "zip"]

All of the methods of Enumerable are written in terms of a single method, each, which is
an iterator.

If class implements each and includes Enumerable then all those 22 methods become
available to instances of the class.

CSc 372, Fall 2006 Ruby, Slide 198
W. H. Mitchell (whm@msweng.com)

Enumerable, continued

Here's a class whose instances simply hold three values:

class Trio
 include Enumerable
 def initialize(a,b,c); @values = [a,b,c]; end
 def each
 @values.each {|v| yield v }
 end
end

Because Trio provides each and includes Enumerable, we can do a lot with it:

>> t = Trio.new(10,"twenty",30) => #<Trio:0x28e9958 @values=[10, "twenty", 30]>

>> t.member?(30) => true

>> t.map { |e| e * 2 } => [20, "twentytwenty", 60]

>> t.partition { |e| e.is_a? Numeric } => [[10, 30], ["twenty"]]

CSc 372, Fall 2006 Ruby, Slide 199
W. H. Mitchell (whm@msweng.com)

The Comparable module

Another common mixin is Comparable. These methods,

>> Comparable.instance_methods
=> ["==", ">=", "<", "<=", "between?", ">"]

are implemented in terms of <=>.

Let's compare rectangles on the basis of areas:

class Rectangle
 include Comparable
 def <=> rhs
 diff = self.area - rhs.area
 case
 when diff < 0 then -1
 when diff > 0 then 1
 else 0
 end
 end
end

CSc 372, Fall 2006 Ruby, Slide 200
W. H. Mitchell (whm@msweng.com)

Comparable, continued

Usage:

>> r1 = Rectangle.new(3,4) => 3 x 4 Rectangle

>> r2 = Rectangle.new(5,2) => 5 x 2 Rectangle

>> r3 = Rectangle.new(2,2) => 2 x 2 Rectangle

>> r1 < r2 => false

>> [r1,r2,r3].sort => [2 x 2 Rectangle, 5 x 2 Rectangle, 3 x 4 Rectangle]

>> [r1,r2,r3].min => 2 x 2 Rectangle

>> r2.between?(r1,r3) => false

>> r2.between?(r3,r1) => true

CSc 372, Fall 2006 Ruby, Slide 201
W. H. Mitchell (whm@msweng.com)

Graphics with Tk

Tk Basics

Hello in Tk

Component callbacks

Updating a component

Sidebar: Named parameters

Drawing on a canvas

Mouse events

Grand finale: Pulsing circles

CSc 372, Fall 2006 Ruby, Slide 202
W. H. Mitchell (whm@msweng.com)

Tk basics

Tk is a library of components for building GUIs. It provides a typical collection of elements
including buttons, labels, lists, scrollbars, text fields, and more.

Tk was created by John Outsterout at UCB for use with Tcl ("tickle"), a scripting language.

Many languages, including Ruby, have a library for working with Tk. Aside from Tcl, Tk is
perhaps most often used with Perl.

There are other Ruby GUI toolkits but Tk is available on the widest range of platforms. (?)

The Ruby-specific documentation on Tk is pretty skimpy. (Take a look at the Tk section in
http://ruby-doc.org/stdlib!) Tk tutorials generally refer readers to the Perl Tk
documentation.

Disclaimer: The instructor only has spent a few hours experimenting with Tk. In a few
minutes you'll know at least as much as he does about Tk.

CSc 372, Fall 2006 Ruby, Slide 203
W. H. Mitchell (whm@msweng.com)

Hello in Tk

Here is a nearly minimal Tk program that puts up a window with a label that says "Hello!"

tkhello.rb
require 'tk' # Later examples don't show this line but it is still needed.
root = TkRoot.new

TkLabel.new(root) {
 text "Hello!"
 font "Courier 36 bold italic"
 pack
 }

Tk.mainloop

Notes:
TkRoot.new creates a new top-level frame.

TkLabel.new creates a label and puts it in the root. It is configured via method calls in
the associated block.

pack invokes a geometry manager. Without this call, only an empty frame appears.

CSc 372, Fall 2006 Ruby, Slide 204
W. H. Mitchell (whm@msweng.com)

Component callbacks

If a button is configured with a command, the associated block is executed when the button
is pressed.

Here's a program that creates a button for each command line argument and prints as buttons
are clicked. The button text size is proportional to the length of the label.

class Button # tkclick1.rb
 def initialize(label)
 TkButton.new{
 text label; font "Jokewood #{label.size*10}";
 command { puts "Got a click on '#{label}'" }
 pack
 }
 end
end
ARGV.each { |label| Button.new(label) }
Tk.mainloop

This example takes advantage of the fact that we really don't need to specify the root.

CSc 372, Fall 2006 Ruby, Slide 205
W. H. Mitchell (whm@msweng.com)

Updating a component

The following code creates a label that is updated with a count when a button is pressed:

def fmt_clicks n; "Clicks: %d" % n; end # tkclick2.rb

label = TkLabel.new {
 text fmt_clicks(0); font "HelterSkelter 36"; pack }

TkButton.new {
 text "Push Here";
 font "Jokewood 36";
 clicks = 0
 command { clicks += 1

 label.configure(:text => (fmt_clicks clicks))
 }
 pack
 }
Tk.mainloop

A call to label.configure is used to update the text. The syntax ':text => ...' creates and
passes a hash as the argument. (A sidebar on this follows.)

CSc 372, Fall 2006 Ruby, Slide 206
W. H. Mitchell (whm@msweng.com)

Sidebar: Named parameters

Some languages support named parameters—instead of parameters being specified by
position, they are specified by name and are position-independent. Here is a generic example
of equivalent calls using named parameters:

f(x = 3, y = 4)
f(y = 4, x = 3)

Ruby does not provide named parameters but does provide an interesting facility with a hash:

def f(a, b, h)
 p [a, b, h]
end

f(10, 20, :x => 10, :y => 2, "x"*5 => [])

The result:

[10, 20, {:x=>10, :y=>2, "xxxxx"=>[]}]

The hash specification must be the last part of the argument list. It is common to see
Symbols used for the keys.

CSc 372, Fall 2006 Ruby, Slide 207
W. H. Mitchell (whm@msweng.com)

Drawing on a Canvas

The TkCanvas class provides a drawing surface.

width = 400 # tkcanvas1.rb
height = 300

canvas = TkCanvas.new { width width+10; height height+10 }
canvas.pack

args = [canvas, 5, 5, width, height]
TkcOval.new *args
TkcLine.new *args
TkcRectangle.new *args

Tk.mainloop

Objects are added to the canvas by creating instances of classes like TkcOval (canvas oval).

CSc 372, Fall 2006 Ruby, Slide 208
W. H. Mitchell (whm@msweng.com)

Mouse events

The bind method of Canvas specifies a "Proc" to be called whenever a particular event is
recognized.

def do_press(x, y) # tkmouse.rb
 printf("Button down at %d, %d\n", x, y)
end

def do_motion(x, y); printf("Motion at %d, %d\n", x, y); end

def do_release(x, y); printf("Button up at %d, %d\n", x, y); end

canvas = TkCanvas.new; canvas.pack

canvas.bind("1", lambda {|e| do_press(e.x, e.y)})
canvas.bind("B1-Motion", lambda {|x, y| do_motion(x, y)}, "%x %y")
canvas.bind("ButtonRelease-1", lambda {|x, y| do_release(x, y)}, "%x %y")

Tk.mainloop

Kernel#lamba creates a Proc from the associated block. Think of a Proc like an
anonymous function in ML.

CSc 372, Fall 2006 Ruby, Slide 209
W. H. Mitchell (whm@msweng.com)

Grand finale: Pulsing Circles

class Circle
 SZ = 200
 def initialize(canvas, x, y)
 @canvas = canvas; @inc = 1; @ux = x - SZ/2; @uy = y - SZ/2
 @lx = @ux + SZ; @ly = @uy + SZ
 @oval = TkcOval.new(@canvas, @ux, @uy, @lx, @ly)
 @canvas.after(1) { tick }
 end
 def tick
 @inc *= -1 if @ux >= @lx or (@ux - @lx).abs > SZ
 @ux += @inc; @uy += @inc; @lx -= @inc; @ly -= @inc
 @oval.coords(@ux, @uy, @lx, @ly)
 @canvas.after(1) { tick }
 end
end

$canvas = TkCanvas.new { width 400; height 300; pack }
$canvas.bind("1", lambda {|e| do_press(e.x, e.y)})

def do_press(x, y); Circle.new($canvas, x, y); end
Tk.mainloop()

CSc 372, Fall 2006 Ruby, Slide 210
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Ruby, Slide 211
W. H. Mitchell (whm@msweng.com)

Miscellaneous

JRuby

My first practical Ruby program

CSc 372, Fall 2006 Ruby, Slide 212
W. H. Mitchell (whm@msweng.com)

JRuby

"JRuby is an 100% pure-Java implementation of the Ruby programming language."
—Home page at jruby.codehaus.org

Here's a bash script, jruby, that runs it:

java -jar c:/dnload/jruby-0.9.0/lib/jruby.jar $*

Usage:

% time jruby mtimes.rb mtimes.1 the
user 0m0.061s
...

% time ruby mtimes.rb mtimes.1 the
user 0m0.015s
...

So what's the big deal?

CSc 372, Fall 2006 Ruby, Slide 213
W. H. Mitchell (whm@msweng.com)

JRuby, continued

require 'java' # This is swing2.rb from the JRuby samples.
include_class "java.awt.event.ActionListener"
include_class ["JButton", "JFrame", "JLabel", "JOptionPane"].

map {|e| "javax.swing." + e}

frame = JFrame.new("Hello Swing")
button = JButton.new("Klick Me!")

class ClickAction < ActionListener
def actionPerformed(evt)

JOptionPane.showMessageDialog(nil,
"<html>Hello from <u>JRuby</u>.
" +
"Button '#{evt.getActionCommand()}' clicked.")

end
end
button.addActionListener(ClickAction.new)

frame.getContentPane().add(button) # Add the button to the frame

frame.setDefaultCloseOperation(JFrame::EXIT_ON_CLOSE) # Show frame
frame.pack(); frame.setVisible(true)

CSc 372, Fall 2006 Ruby, Slide 214
W. H. Mitchell (whm@msweng.com)

My first practical Ruby program

September 3, 2006:

n = 1
d = Date.new(2006, 8, 22)
incs = [2,5]
pos = 0
while d < Date.new(2006, 12, 6)
 if d != Date.new(2006, 11, 23)
 printf("%s %s, #%2d\n",

if d.cwday() == 2: "T"; else "H";end, d.strftime("%m/%d/%y"), n)
 n += 1
 end
 d += incs[pos % 2]
 pos += 1
end

Output:
T 08/22/06, # 1
H 08/24/06, # 2
T 08/29/06, # 3
...

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214

