
CSE 341 - Programming Languages
Final exam - Winter 2010 - Answer Key

1. (10 points) Write a Haskell function until_false that takes a function f and a list xs. It returns a list of the
elements of xs for which f evaluates to true — but as soon as f evaluates to false, it stops and doesn’t examine
any more elements. Here are some examples:

until_false even [2,4,6,7,10,12] => [2,4,6]
until_false even [2..] => [2]
until_false even [] => []

until_false f [] = []
until_false f (x:xs) | f x = x : until_false f xs

| otherwise = []

2. (5 points) What is the most general possible type for your until_false function from Question 1?

until_false :: (a -> Bool) -> [a] -> [a]

3. (20 points) The original Scheme metacircular interpreter doesn’t include or.

(a) Write a Scheme function or->combination that implements or as a derived expression. Assume that
the argument to or->combination is a legal or expression.
This is a bit tricky. If the or has one or more expressions, you need to evaluate the first one and save the
value (using a temporary variable), to avoid evaluating it more than once. Then test the temporary variable.
Further, you want to avoid having a temporary name override some other name used in the expressions —
to accomplish this, the code below uses gensym to generate a new, unique name.

(define (or->combination expr)
(cond ((null? (cdr expr)) '#f) ; no arguments to 'or'

((null? (cddr expr)) (cadr expr)) ; one argument to 'or'
(else ; more than one argument
(let ((var (gensym)))

(list 'let (list (list var (cadr expr)))
(list 'if var var (cons 'or (cddr expr))))))))

Here is another version, using quasi-quoting:

(define (or->combination2 expr)
(cond ((null? (cdr expr)) '#f) ; no arguments to 'or'

((null? (cddr expr)) (cadr expr)) ; one argument to 'or'
(else ; more than one argument
(let ((var (gensym)))

`(let ((,var ,(cadr expr)))
(if ,var ,var (or ,@(cddr expr))))))))

(b) Using your definition, what is the value of the following expressions?

i. (or->combination '(or))

#f

ii. (or->combination '(or (f 10)))

(f 10)

iii. (or->combination '(or (= x 5) (< y 10) (member x xs)))

1

(let ((g2 (= x 5)))
(if g2 g2 (or (< y 10) (member x xs))))

(There should have been a space between the < and the y – fixed in this answer key.)

Hints: remember that for derived expressions, the Scheme interpreter takes a list representing the expression in
one form, in this case as a list (or ...), and returns another list representing an equivalent expression that
either doesn’t use or, or that uses a simpler or expression (i.e., a recursive case). You can use if or cond in
your equivalent expression. Also remember the semantics of or: expressions are evaluated left to right, and the
value of the first expression that evaluates to something other than #f is returned. Any remaining expressions
are not evaluated. If all the expressions evaluate to #f, return #f. If there are no expressions, return #f. (Never
evaluate an expression more than once, of course.)

If you need a brand-new symbol, you can generate one using (gensym).

4. (10 points)

(a) Write one or more rules to define the positives constraint in CLP(R). positives takes two argu-
ments. It should succeed if both arguments are lists of numbers, and the second argument contains all the
positive numbers in the first list (in the same order as in the first list), and only positive numbers. Don’t
use cut in your rules. For example, these goals should succeed:

positives([4,50,-1,-10,2], [4,50,2]).
positives([], []).

and these should fail:

positives([4,50,-1,-10,2], [4,50]).
positives([4,50,-1,2], [4,50,-1]).
positives([], [10]).

Solution:

positives([],[]).
positives([X|Xs],[X|Ys]) :- X>0, positives(Xs,Ys).
positives([X|Xs],Ys) :- X<=0, positives(Xs,Ys).

(b) What are all of the answers returned for the following goals, using your rules? (If there are infinitely many,
give the first 3.)

• positives([3,-4,0], B).

B = [3]

• positives([3,10], B).

B = [3, 10]

• positives(A, []).

A = []

A = [_t1]
_t1 <= 0

A = [_t1, _t2]
_t1 <= 0
_t2 <= 0

5. (10 points) Consider the member rule in CLP(R):

member(X,[X|Xs]).
member(X,[_|Xs]) :- member(X,Xs).

2

Draw the simplified derivation trees for the following goals. If the tree is infinite, say that, and include at least
the first 3 answers.

(a) member(A,[2,3]).

(b) member(2,As).

See separate scanned answer.

6. (8 points) Consider a version of the CLP(R) member rule with a cut:

member_cut(X,[X|Xs]) :- !.
member_cut(X,[_|Xs]) :- member_cut(X,Xs).

What are all of the answers returned for the following goals? If there are an infinite number of answers, give the
first three.

?- member_cut(10,[1,2,3]).
no.

?- member_cut(A,[1,2,3]).
A=1.

?- member_cut(A,[]).
no.

?- member_cut(10,As).
As=[10].

7. (6 points) Consider the following example in an Algol-like language.

begin
integer n;
procedure p(j: integer);

begin
j := j+n;
n := 2*n+j;
print(n);
print(j);
end;

n := 10;
p(n);
print(n);
end;

(There should have been a : in the assignment to j - fixed above.)

(a) What is the output when j is passed by value?
40 20 40

(b) What is the output when j is passed by value result?
40 20 20

(c) What is the output when j is passed by reference?
60 60 60

3

8. (10 points) In Ruby, true and false are objects: true is an instance of TrueClass, and false is an
instance of FalseClass. and, or, and ! (not) are built-in, but they could actually be user-defined methods.
Write methods for and, and_sc, or, or_sc, and not for both TrueClass and FalseClass (so 10
methods in all). and should always evaluate its argument, while and_sc should do short-circuit evaluation (so
it should take a block rather than a regular argument); and similarly for or and or_sc. Here some example
expressions and the result of evaluating them:

(1==2).not => true
(1==2).and(1/0==1) => ZeroDivisionError exception
(1==2).and_sc {1/0==1} => false

4

class TrueClass
def and(b)

b
end
def and_sc

return the value of the block
yield

end
def or(b)

true
end
def or_sc

this takes a block, but we ignore it
true

end
def not

false
end

end

class FalseClass
def and(b)

false
end
def and_sc

false
end
def or(b)

b
end
def or_sc

yield
end
def not

true
end

end

9. (8 points) Consider the following Java programs Test1, Test2, Test3, and Test4. In each case, does the
program compile correctly? If so, does it execute without error, or is there an exception?

/***************** Test1 *****************/
import java.awt.Point;
class Test1 {

public static void main(String[] args) {
Point[] a;
a = new Point[10];
a[0] = new Point(10,20);
test(a);

}
public static void test(Object[] b) {

b[1] = "clam";

5

}
}

gets a runtime ArrayStoreException
/***/

/***************** Test2 *****************/
import java.awt.Point;
import java.util.LinkedList;
class Test2 {

public static void main(String[] args) {
LinkedList<Point> a = new LinkedList<Point>();
a.add(new Point(10,20));
test(a);

}

public static void test(LinkedList<?> b) {
b.add(new Point(20,30));

}
}

gets a compile-time error
/***/

/***************** Test3 *****************/
import java.awt.Point;
import java.util.LinkedList;
class Test3 {

public static void main(String[] args) {
LinkedList<Point> a = new LinkedList<Point>();
a.add(new Point(10,20));
test(a);

}

public static void test(LinkedList<?> b) {
b.add(null);

}
}

executes without error
/***/

/***************** Test4 *****************/
import java.awt.Point;
import java.util.LinkedList;
class Test4 {

public static void main(String[] args) {
LinkedList<Point> a = new LinkedList<Point>();

6

a.add(new Point(10,20));
test(a);

}

public static void test(LinkedList<Object> b) {
b.add(new Point(30,40));

}
}

gets a compile-time error
/***/

10. (5 points) What is the result of evaluating the following Ruby expressions? (Hint: String is a subclass of Object.)

(a) "squid".class => String

(b) "squid".class.class => Class

(c) "squid".class.class.class => Class

(d) "squid".class.superclass => Object

(e) "squid".class.superclass.superclass => nil

11. (4 points) Consider the following Scheme program.

(define n 10)
(define (squid n)

(clam n))
(define (clam k)

(+ n k))

(a) What is the result of evaluating (squid 0)? 10
(b) Suppose that Scheme used dynamic rather than lexical scoping. In that case what would be the result of

evaluating (squid 0)? 0

12. (10 points) Write a count method for the Enumerable mixin in Ruby. The count method
should take any object as a parameter, and return the number of occurences of that object in the
collection. (What counts as an occurrence should be determined by the == test). For example,
["clam", "squid", "clam"].count("clam") should evaluate to 2.

module Enumerable
def count(x)

n = 0
self.each {|i| n=n+1 if x==i}
return n

end
end

7

