
CSE 341, Fall 2011, Assignment 5
Due: Friday November 18, 11:00PM

Set-up: For this assignment, edit a copy of hw5provided.rkt, which is on the course website. In particular,
replace occurrences of "CHANGE" to complete the problems. Do not use any mutation (set!, set-mcar!,
etc.) anywhere in the assignment.

Overview: This homework has to do with mupl (a Made Up Programming Language). mupl programs
are written directly in Racket by using the constructors defined by the structs defined at the beginning of
hw5provided.rkt. This is the definition of mupl’s syntax:

• If s is a Racket string, then (var s) is a mupl expression (a variable use).

• If n is a Racket integer, then (int n) is a mupl expression (a constant).

• If e1 and e2 are mupl expressions, then (add e1 e2) is a mupl expression (an addition).

• If s1 and s2 are Racket strings and e is a mupl expression, then (fun s1 s2 e) is a mupl expression (a
function). In e, s1 is bound to the function itself (for recursion) and s2 is bound to the (one) argument.
Also, (fun #f s2 e) is allowed for anonymous nonrecursive functions.

• If e1, e2, and e3, and e4 are mupl expressions, then (ifgreater e1 e2 e3 e4) is a mupl expression
(a conditional meaning e1 is strictly greater than e2).

• If e1 and e2 are mupl expressions, then (call e1 e2) is a mupl expression (a function call).

• If s is a Racket string and e1 and e2 are mupl expressions, then (mlet s e1 e2) is a mupl expression
(a let expression) where the value of e1 is bound to s in the evaluation of e2.

• If e1 and e2 are mupl expressions, then (apair e1 e2) is a mupl expression (a pair-creator).

• If e1 is a mupl expression, then (fst e1) is a mupl expression (getting part of a pair).

• If e1 is a mupl expression, then (snd e1) is a mupl expression (getting part of a pair).

• (aunit) is a mupl expression (holding no data, much like () in ML or null in Racket).

• If e1 is a mupl expression, then (isaunit e1) is a mupl expression (testing for (aunit)).

• (closure env f) is a mupl value where f is mupl function (an expression made from fun) and env
is an environment mapping variables to values. Closures do not appear in source programs; they result
from evaluating functions.

A mupl value is a mupl integer constant, a mupl closure, a mupl aunit, or a mupl pair of mupl values.
Similar to Racket, we can build list values out of nested pair values that end with aunit. Such a mupl value
is called a mupl list.

You should assume mupl programs are syntactically correct (e.g., do not worry about wrong things like (int
"hi") or (int (int 37)). But do not assume mupl programs are free of “type” errors like (add (aunit)
(int 7)) or (fst (int 7)).

Warning: This assignment is difficult because you have to understand mupl well and debugging an inter-
preter is an acquired skill. Start early.

Turn-in Instructions

• Put all your solutions in one file, lastname hw5.rkt, where lastname is replaced with your last name.
Put tests in lastname hw5 test.rkt. As usual, a testing file is mandatory but we will not grade it.

• Turn in your files using the Catalyst dropbox link on the course website.

1



Problems:

1. Warm-Up:

(a) Write a Racket function racketlist->mupllist that takes a Racket list (presumably of mupl
values but that will not affect your solution) and produces an analogous mupl list with the same
elements in the same order.

(b) Write a Racket function mupllist->racketlist that takes a mupl list (presumably of mupl
values but that will not affect your solution) and produces an analogous Racket list (of mupl
values) with the same elements in the same order.

2. Implementing the mupl Language: Write a mupl interpreter, i.e., a Racket function eval-prog
that takes a mupl program p and either returns the mupl value that p evaluates to or calls Racket’s
error if evaluation encounters a run-time mupl type error or unbound mupl variable.

A mupl expression is evaluated under an environment (for evaluating variables, as usual). In your
interpreter, use a Racket list of Racket pairs to represent this environment (which is initially empty)
so that you can use without modification the provided envlookup function. Here is a description of
the semantics of mupl expressions:

• All values (including closures) evaluate to themselves. For example, (eval-prog (int 17))
would return (int 17), not 17.

• A variable evaluates to the value associated with it in the environment.

• An addition evaluates its subexpressions and assuming they both produce integers, produces the
integer that is their sum. (Note this case is done for you to get you pointed in the right direction.)

• Functions are lexically scoped: A function evaluates to a closure holding the function and the
current environment.

• An ifgreater evaluates its first two subexpressions to values v1 and v2 respectively. Assuming
both values are integers, it evaluates its third subexpression if v1 is a strictly greater integer than
v2 else it evaluates its fourth subexpression.

• An mlet expression evaluates its first expression to a value v. Then it evaluates the second
expression to a value, in an environment extended to map the name in the mlet expression to v.

• A call evaluates its first and second subexpressions to values. If the first is not a closure, it is an
error. Else, it evaluates the closure’s function’s body in the closure’s environment extended to
map the function’s name to the closure (unless the name field is #f) and the function’s argument
to the result of the second subexpression.

• A pair expression evaluates its two subexpressions and produces a (new) pair holding the results.

• A fst expression evaluates its subexpression. It is an error if the result is not a pair of values. Else
the result of the fst expression is the e1 field in the pair.

• A snd expression is the same as a fst expression except the result is the e2 field of the pair.

• An isaunit expression evaluates its subexpression. If the result is unit, then the result for the
isunit expression is the integer 1, else the result is the integer 0.

Hint: The call case is the most complicated. In the sample solution, no case is more than 12 lines
and several are 1 line.

2



3. Expanding the Language: mupl is a small language, but we can write Racket functions that act like
mupl macros so that users of these functions feel like mupl is larger. The Racket functions produce
mupl expressions that could then be put inside larger mupl expressions or passed to eval-prog. In
implementing these Racket functions, do not use closure (which is only used internally in eval-prog)
nor eval-prog (we are creating a program, not running it).

(a) Write a Racket function ifaunit that takes three mupl expressions e1, e2, and e3. It returns a
mupl expression that when run evaluates e1 and if the result is unit then it evaluates e2 and that
is the overall result, else it evaluates e3 and that is the overall result. Sample solution: 1 line.

(b) Write a Racket function mlet* that takes a Racket list of Racket pairs ’((s1 . e1) . . . (si . ei)
. . . (sn . en)) and a final mupl expression en+1. In each pair, assume si is a Racket string and
ei is a mupl expression. mlet* returns a mupl expression whose value is en+1 evaluated in an
environment where each si is a variable bound to the result of evaluating the corresponding ei

for 1 ≤ i ≤ n. The bindings are done sequentially, so that each ei is evaluated in an environment
where s1 through si−1 have been previously bound to the values e1 through ei−1.

(c) Write a Racket function ifeq that takes four mupl expressions e1, e2, e3, and e4 and returns a
mupl expression that acts like ifgreater except e3 is evaluated if and only if e1 and e2 are equal
integers. Unfortunately, mupl does not have hygiene and we want to evaluate e1 and e2 exactly
once, so assume the mupl expressions do not use the variables _x and _y (i.e., you can use these
variables to implement ifeq).

4. Using the Language: We can write mupl expressions directly in Racket using the constructors for
the structs and (for convenience) the functions we wrote in the previous problem.

(a) Bind to the Racket variable mupl-map a mupl function that acts like map (as we used extensively
in ML). Your function should be curried: it should take a mupl function and return a mupl
function that takes a mupl list and applies the function to every element of the list returning a
new mupl list. Recall a mupl list is aunit or a pair where the second component is a mupl list.

(b) Bind to the Racket variable mupl-mapAddN a mupl function that takes an integer i and returns a
mupl function that takes a list of integers and returns a new list that adds i to every element of
the list. Use mupl-map (a use of mlet is given to you to make this easier).

5. Challenge Problem: Write a second version of eval-prog (bound to eval-prog2) that builds
closures with smaller environments: When building a closure, it uses an environment that is like the
current environment but only holds variables that are free variables in the function part of the closure.
(A free variable is a variable that appears in the function without being under some shadowing binding
for the same variable.) Note: You will have to write a Racket function that takes a mupl expression
and computes its free variables.

For full challenge-problem credit, use memoization (yes, you should use mutation for this) to avoid
computing any function’s free variables more than once.

Warning: The sample solution does not include a solution to the extra credit.

3


