CSE341: Programming Languages Lecture 10
References, Polymorphic Datatypes, the Value Restriction, Type Inference

Ben Wood, filling in for Dan Grossman
Fall 2011

Callbacks

A common idiom: Library takes functions to apply later, when an event occurs - examples:

- When a key is pressed, mouse moves, data arrives
- When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks

- Different callbacks may need different private data with different types
- Fortunately, a function's type does not include the types of bindings in its environment
- (In OOP, objects and private fields are used similarly, e.g., Java Swing's event-listeners)

Mutable state

While it's not absolutely necessary, mutable state is reasonably appropriate here

- We really do want the "callbacks registered" and "events that have been delivered" to change due to function calls

For the reasons we have discussed, ML variables really are immutable, but there are mutable references (use sparingly)

- New types: t ref where t is a type
- New expressions:
- ref e to create a reference with initial contents e
- e1 := e2 to update contents
- !e to retrieve contents (not negation)

References example

```
val x = ref 42
val y = ref 42
val z = x
val_= x := 43
val w = (!y) + (!z) (* 85 *)
(* x + 1 does not type-check)
```

- A variable bound to a reference (e.g., \mathbf{x}) is still immutable: it will always refer to the same reference
- But the contents of the reference may change via :=
- And there may be aliases to the reference, which matter a lot
- Reference are first-class values
- Like a one-field mutable object, so := and ! don't specify the field

Example call-back library

Library maintains mutable state for "what callbacks are there" and provides a function for accepting new ones

- A real library would support removing them, etc.
- In example, callbacks have type int->unit (executed for side-effect)

So the entire public library interface would be the function for registering new callbacks:
val onKeyEvent : (int -> unit) -> unit

Library implementation

```
val cbs : (int -> unit) list ref = ref []
fun onKeyEvent f = cbs := f :: (!cbs)
fun onEvent i =
    let fun loop fs =
        case fs of
        [] => ()
        | f::fs' => (f i; loop fs')
    in loop (!cbs) end
```


Clients

Can only register an int -> unit, so if any other data is needed, must be in closure's environment

- And if need to "remember" something, need mutable state

Examples:

```
val timesPressed \(=\) ref 0
val _ onKeyEvent (fn _ \(=>\)
    timesPresse \(\bar{d}:=(\) !timesPressed \()+1)\)
fun printIfPressed \(i=\)
    onKeyEvent (fn j =>
        if \(i=j\)
        then print ("pressed " ^ Int.toString i)
        else ())
```


More about types

- Polymorphic datatypes, type constructors
- Why do we need the Value Restriction?
- Type inference: behind the curtain

Polymorphic Datatypes

```
datatype int_list =
    EmptyList
    | Cons of int * int_list
datatype 'a non_mt_list =
    One of 'a
    | More of 'a * ('a non_mt_list)
datatype (`a,`b) tree =
    Leaf of `a
    | Node of `b * (`a,`b) tree * (`a,`b) tree
val t1 = Node("hi",Leaf 4,Leaf 8)
    (* (int,string) tree *)
val t2 = Node("hi",Leaf true,Leaf 8)
(* does not typecheck *)
```


Polymorphic Datatypes

```
datatype `a list = [] | :: of `a * (`a list)
    (* if this were valid syntax *)
datatype 'a option = NONE | SOME of 'a
```

- list, tree, etc. are not types; they are type constructors
- int list, (string,real) tree, etc. are types.
- Pattern-matching works on all datatypes.

The Value Restriction Appears :

If you use partial application to create a polymorphic function, it may not work due to the value restriction

- Warning about "type vars not generalized"
- And won't let you call the function
- This should surprise you; you did nothing wrong © but you still must change your code
- See the written lecture summary about how to work around this wart (and ignore the issue until it arises)
- The wart is there for good reasons, related to mutation and not breaking the type system

Purpose of the Value Restriction

```
val xs = ref []
    (* xs : 'a list ref *)
val _ = xs := ["hi"]
    (* instantiate 'a with string *)
val \(y=1+(h d(!x s))\)
    (* BAD: instantiate 'a with int *)
```

- A binding is only allowed to be polymorphic if the right-hand side is:
- a variable; or
- a value (including function definitions, constructors, etc.)
- ref [] is not a value, so we can only give it non-polymorphic types such as int list ref or string list ref, but not 'a list ref.

Downside of the Value Restriction

val pr_list $=$ List.map (fn $x=>(x, x))(* X *)$
val pr_list : int list -> (int*int) list = List.map (fn $x=>(x, x)$)
val pr_list = fn lst $=>$ List.map (fn $x=>(x, x))$ lst
fun pr_list lst $=$ List.map (fn $x=>(x, x))$ lst

- The SML type checker does not know if the ‘a list type uses references internally, so it has to be conservative and assume it could.
- In practice, this means we need to be more explicit about partial application of polymorphic functions.

Type inference: sum

```
    fun sum xs =
        case xs of
            [] => 0
                            | x::xs' => x + (sum xs')
sum : t1 -> t2
    xS : t1
```


Type inference: sum

```
    fun sum xs =
        case xs of
            [] => 0
            | x::xs' => x + (sum xs')
sum : t1 -> t2
    t1 = t5 list
    xs : t1
```


Type inference: sum

```
    fun sum xs =
        case xs of
            [] => 0
            | x::xs' => x + (sum xs')
sum : t1 -> t2
    xS : t1
t1 = t5 list
t2 = int
```


Type inference: sum

$$
\begin{aligned}
& \text { fun sum xs = } \\
& \text { case xs of } \\
& \text { [] => } 0 \\
& \text { | x::xs' => x + (sum } \left.x s^{\prime}\right) \\
& \text { sum : t1 -> t2 } \\
& \text { xs : t1 } \\
& x: t 3
\end{aligned}
$$

Type inference: sum

Type inference: sum

```
    fun sum xs =
        case xs of
                        [] => 0
                            | x::xs' => x + (sum xs')
sum : t1 -> t2
    xs : t1
    x : t3
XS' : t4
```


Type inference: sum

```
fun sum \(\mathrm{xs}=\)
    case xs of
    [] \(=>0\)
    | \(x:: x s^{\prime}=>x+\left(\right.\) sum \(\left.x s^{\prime}\right)\)
```

sum : t1 $->$ t2
Xs : t1
$x: t 3$
$X S^{\prime}: \quad$ t4

$$
\begin{aligned}
\mathrm{t} 1 & =\mathrm{t} 5 \\
\mathrm{t} 2 & =\text { list } \\
\mathrm{t} 3 & =\mathrm{t} 5 \\
\mathrm{t} 4 & =\mathrm{t} 5 \text { list }
\end{aligned}
$$

Type inference: sum

```
fun sum \(\mathrm{xs}=\)
    case xs of
    [] \(=>0\)
    \(x:: x s^{\prime}=>x+\left(s u m x s^{\prime}\right)\)
```

sum : t1 $->$ t2
XS : t1
$x: t 3$
$X S^{\prime}: \quad$ t4

$$
\begin{aligned}
\mathrm{t} 1 & =\mathrm{t} 5 \\
\mathrm{t} 2 & =\text { int } \\
\mathrm{t} 3 & =\mathrm{t} 5 \\
\mathrm{t} 4 & =\mathrm{t} 5 \\
\mathrm{t} 3 & =\text { int }
\end{aligned}
$$

Type inference: sum

```
fun sum \(\mathrm{xs}=\)
    case xs of
    [] \(=>0\)
    \(x:: x s^{\prime}=>x+\left(s u m x s^{\prime}\right)\)
```

sum : t1 $->$ t2
xs : t1
$x: t 3$
$X S^{\prime}: ~ t 4$

$$
\begin{aligned}
\text { t1 } & =\text { t5 list } \\
\text { t2 } & =\text { int } \\
\text { t3 } & =\text { t5 } \\
\text { t } 4 & =\text { t5 list } \\
\text { t3 } & =\text { int } \\
\text { t1 } & =\text { t } 4
\end{aligned}
$$

Type inference: sum

```
fun sum \(\mathrm{xs}=\)
    case xs of
    [] \(=>0\)
    \(x:: x s^{\prime}=>x+\left(s u m x s^{\prime}\right)\)
```

sum : t1 $->$ t2
XS : t1
$x: t 3$
$X S^{\prime}: ~ t 1$

$$
\begin{aligned}
\text { t1 } & =\text { t5 list } \\
\text { t2 } & =\text { int } \\
\text { t3 } & =\text { t5 } \\
\text { t } 4 & =t 5 \quad \text { list } \\
t 3 & =\text { int } \\
\text { t1 } & =t 4
\end{aligned}
$$

Type inference: sum

```
fun sum \(\mathrm{xs}=\)
    case xs of
    [] \(=>0\)
    \(\mathrm{x}:: \mathrm{x} \mathrm{S}^{\prime}=>\mathrm{x}+\left(\right.\) sum \(\left.\mathrm{xs} \mathrm{s}^{\prime}\right)\)
```

sum : t1 $->$ t2
Xs : t1
$x: t 3$
$X S^{\prime}: ~ t 1$

$$
\begin{aligned}
\mathrm{t} 1 & =\mathrm{t} 5 \quad \text { list } \\
\mathrm{t} 2 & =\text { int } \\
\mathrm{t} 3 & =\mathrm{t} 5 \\
\mathrm{t} 1 & =\mathrm{t} 5 \\
\mathrm{t} 3 & =\text { list } \\
\mathrm{t} 1 & =\mathrm{t} 4
\end{aligned}
$$

Type inference: sum

```
fun sum \(\mathrm{xs}=\)
    case xs of
    [] \(=>0\)
    \(x:: x s^{\prime}=>x+\left(s u m x s^{\prime}\right)\)
```

sum : t1 $->$ t2
Xs : t1
$x: t 3$
$X S^{\prime}: ~ t 1$

$$
\begin{aligned}
t 1 & =t 5 \quad \text { list } \\
t 2 & =\text { int } \\
t 3 & =t 5 \\
t 1 & =t 5 \quad \text { list } \\
t 3 & =\text { int } \\
t 1 & =t 4
\end{aligned}
$$

Type inference: sum

$$
\begin{aligned}
& \text { fun sum } \mathrm{xs}= \\
& \text { case xs of } \\
& \text { [] }=>0 \\
& \mid x:: x s^{\prime}=>x+\left(\text { sum } x s^{\prime}\right) \\
& \text { sum : t1 }->\text { t2 } \\
& \text { XS : t1 } \\
& x: t 3 \\
& X S^{\prime}: ~ t 1 \\
& \text { t1 }=\text { t5 list } \\
& \text { t2 }=\text { int } \\
& t 3=t 5 \\
& \text { t1 }=\text { t5 list } \\
& \text { t3 }=\text { int } \\
& \text { t1 = t4 }
\end{aligned}
$$

Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xs' => x + (sum xs')
```

sum : t1 $->$ t2
xs : t1
x : int
$X S^{\prime}: ~ t 1$

$$
\begin{array}{ll}
t 1 & =t 5 \quad \text { list } \\
t 2 & =\text { int } \\
t 3 & =t 5 \\
t 1 & =t 5 \quad \text { list } \\
t 3 & =\text { int } \\
t 1 & =t 4
\end{array}
$$

Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xS' => x + (sum xs')
```

sum : t1 $->$ t2
XS : t1
x : int
$X S^{\prime}: ~ t 1$

$$
\begin{aligned}
\mathrm{t} 1 & =\mathrm{t} 5 \quad \text { list } \\
\mathrm{t} 2 & =\text { int } \\
\text { int } & =\mathrm{t} 5 \\
\mathrm{t} 1 & =\mathrm{t} 5 \\
\mathrm{t} 3 & =\text { int } \\
\mathrm{t} 1 & =\mathrm{t} 4
\end{aligned}
$$

Type inference: sum

```
fun sum \(\mathrm{xs}=\)
    case xs of
    [] \(=>0\)
    \(\mathrm{x}:: \mathrm{x} \mathrm{s}^{\prime}=>\mathrm{x}+\left(\right.\) sum \(\left.\mathrm{x} \mathrm{s}^{\prime}\right)\)
```

sum : t1 $->$ t2
XS : t1
x : int
$X S^{\prime}: ~ t 1$

$$
\begin{array}{rlr}
t 1 & =t 5 \quad \text { list } \\
t 2 & =\text { int } \\
\text { int } & =t 5 \\
t 1 & =t 5 \quad \text { list } \\
t 3 & =\text { int } \\
t 1 & =t 4
\end{array}
$$

Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xS' => x + (sum xs')
```

sum : t1 $->$ t2
XS : t1
x : int
$X S^{\prime}: ~ t 1$

$$
\begin{aligned}
t 1 & =\text { int list } \\
t 2 & =\text { int } \\
\text { int } & =t 5 \\
t 1 & =t 5 \quad \text { list } \\
t 3 & =\text { int } \\
t 1 & =t 4
\end{aligned}
$$

Type inference: sum

$$
\begin{aligned}
& \text { fun sum } \mathrm{xs}= \\
& \text { case xs of } \\
& \text { [] }=>0 \\
& \text { | } x:: x s^{\prime}=>x+\left(\text { sum } x s^{\prime}\right) \\
& \text { sum : t1 }->\text { t2 } \\
& \text { xs : t1 } \\
& \mathrm{x} \text { : int } \\
& X S^{\prime}: \text { t1 } \\
& \text { t1 = int list } \\
& \text { t2 }=\text { int } \\
& \text { int }=\text { t5 } \\
& \text { t1 }=t 5 \text { list } \\
& \text { t3 }=\text { int } \\
& t 1=t 4
\end{aligned}
$$

Type inference: sum

```
sum : t1 -> int
    xs : t1
    x : int
xs' : t1
```


Type inference: sum

```
sum : t1 -> int
    xs : t1
    x : int
xs' : t1
```


Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    | x::xS' => x + (sum xs')
```

sum : int list $->$ int
XS : int list
x : int
XS' : int list
$\begin{aligned} t 1 & =\text { int list } \\ t 2 & =\text { int } \\ \text { int } & =t 5 \\ t 1 & =t 5 \quad \text { list } \\ t 3 & =\text { int } \\ t 1 & =t 4\end{aligned}$

Type inference: length

```
    fun length xs =
    case xs of
        [] => 0
    | _::xs' => 1 + (length xs')
length : t1 -> t2
    xs : t1
```


Type inference: length

```
    fun length xs =
    case xs of
        [] => 0
    | _::xs' => 1 + (length xs')
length : t1 -> t2
t1 = t4 list
    xs : t1
```


Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```

length	$: t 1->t 2$	$t 1$	$=t 4$ list
$x s$	$: t 1$	$t 2$	$=$ int

Type inference: length

$$
\begin{aligned}
& \text { fun length xs = } \\
& \text { case xs of } \\
& \text { [] => } 0 \\
& \text { | _::xs' => } 1 \text { + (length xs') } \\
& \text { length : t1 -> t2 } \\
& \text { xs : t1 } \\
& x s^{\prime} \text { : t3 }
\end{aligned}
$$

Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```

length	$: t 1->t 2$	$t 1$	$=t 4$ list
$x S$	t1	$t 2$	$=$ int
$x S^{\prime}$	$: t 3$	$t 3$	$=t 4$ list

Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```

length	$: t 1->t 2$	$t 1$	$=t 4$ list
$x S$	$: t 1$	$t 2$	$=$ int
$x s^{\prime}$	$: t 3$	$t 3$	$=t 4$ list
		$t 1$	$=t 3$

Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```

length	$: t 1->t 2$	$t 1$	$=t 4$ list
$x S$	$: t 1$	$t 2$	$=$ int
$x S^{\prime}$	$: t 1$	$t 1$	$=t 4$ list
		$t 1$	$=t 3$

Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```

```
length : t1 -> t2
    xs : t1
    XS' : t1
```

```
t1 \(=\) t4 list
t2 \(=\) int
t1 = t4 list
```


Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```

length	$:$ t1 $->$ t2	$t 1$	$=$ t 4 ist
$x S$	t1	$t 2$	$=$ int
$x S^{\prime}$	t1	$t 1$	$=t 4$ list
		$t 1$	$=t 3$

Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```

```
length : tl -> int
    xs : t1
    XS' : t1
```

t1 = t4 list
t2 $=$ int
t1 = t4 list

Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```

length	t1 $->$ int	$t 1$	$=$ t 4 list
$x S$	t1	$t 2$	$=$ int
$x S^{\prime}$	t1	$t 1$	$=t 4$ list
		$t 1$	$=t 3$

Type inference: length

```
fun length xs =
    case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```


Type inference: length

```
fun length xs =
        case xs of
        [] => 0
    | _::xS' => 1 + (length xS')
```


length works no matter what 'a is.

Type inference: compose

$$
\begin{aligned}
& f u n \text { compose }(f, g)=f n x \Rightarrow f(g x) \\
\text { compose } & : t 1 * t 2->t 3 \\
f & : t 1 \\
g & : t 2
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose (f,g) = fn } x=>f(g \text {) } \\
& \text { compose : t1 * t2 -> t3 } \\
& \text { f : t1 } \\
& g: t 2 \\
& t 3=t 4->t 5
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose }(f, g)=f n x \Rightarrow f(g x) \\
& \text { compose }: t 1 * t 2->t 3 \\
& f: t 1 \\
& g: t 2 \\
& x: t 4
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose }(\mathrm{f}, \mathrm{~g})=\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{f}(\mathrm{~g} x) \\
& \text { compose }: \mathrm{t} 1 * \mathrm{t} \text {) }->\mathrm{t} 3 \\
& \mathrm{f}: \mathrm{t} 1
\end{aligned}
$$

Type inference: compose

$$
\text { fun compose }(f, g)=f n x \Rightarrow f(g x)
$$

$$
\begin{array}{rlrl}
\text { compose } & : t 1 * t 2->t 3 & \\
f & : t 1 & & \\
g & : t 2 & t 3 & =t 4->t 5 \\
x & : t 4 & t 2 & =t 4->t 6 \\
& & t 1 & =t 6->t 7
\end{array}
$$

Type inference: compose

$$
\text { fun compose }(f, g)=f n x \Rightarrow f(g x)
$$

$$
\begin{array}{rlrl}
\text { compose } & : \mathrm{t} 1 \times \mathrm{t} 2->\mathrm{t} 3 \\
\mathrm{f} & : \mathrm{t} 1 & & \\
\mathrm{~g} & : \mathrm{t} 2 & \mathrm{t} 3 & =\mathrm{t} 4->\mathrm{t} 5 \\
\mathrm{x} & : \mathrm{t} 4 & \mathrm{t} 2 & =\mathrm{t} 4->\mathrm{t} 6 \\
& & \mathrm{t} 1 & =\mathrm{t} 6->\mathrm{t7} \\
& \mathrm{t} 5 & =\mathrm{t} 7
\end{array}
$$

Type inference: compose

$$
\text { fun compose }(f, g)=f n x \Rightarrow f(g x)
$$

$$
\begin{array}{rlrl}
\text { compose } & : \mathrm{t} 1 * \mathrm{t} 2->\mathrm{t} 3 \\
\mathrm{f} & : \mathrm{t} 1 & \\
\mathrm{~g} & : \mathrm{t} 2 & \mathrm{t} 3 & =\mathrm{t} 4->\mathrm{t} 5 \\
\mathrm{x} & : \mathrm{t} 4 & \mathrm{t} 2 & =\mathrm{t} 4->\mathrm{t} 6 \\
& & \mathrm{t} 1 & =\mathrm{t} 6->\mathrm{t5}
\end{array}
$$

Type inference: compose

$$
\text { fun compose }(f, g)=f n x \Rightarrow f(g x)
$$

$$
\begin{array}{rlrl}
\text { compose } & : \mathrm{t} 1 & \mathrm{t} \text { t2 }->\mathrm{t} 3 \\
\mathrm{f} & : \mathrm{t} 1 \\
\mathrm{~g} & : \mathrm{t} 2 & & \\
\mathrm{x} & : \mathrm{t} 4 & \mathrm{t} 3 & =\mathrm{t} 4->\mathrm{t} 5 \\
& & \mathrm{t} 2 & =\mathrm{t} 4->\mathrm{t} 6 \\
\mathrm{t} 1 & =\mathrm{t} 6->\mathrm{t5}
\end{array}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose (f,g) = fn } x=>f(g x) \\
& \text { compose : (t6 -> t5) * t2 }->\text { t3 } \\
& \text { f : t6 -> t5 } \\
& 9 \text { : t2 } \\
& x \text { : t4 } \\
& \begin{array}{l}
t 3=t 4->t 5 \\
t 2=t 4->t 6 \\
t 1=t 6->t 5
\end{array} \\
& \text { t5 = t7 }
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose (f,g) }=f n x=>f(g x) \\
& \text { compose : (t6 }->\text { t5) } * \text { t2 }->\text { t3 } \\
& \text { f : t6 -> t5 } \\
& g: ~ t 2 \\
& x: t 4 \\
& t 3=t 4->t 5 \\
& \mathrm{t} 2=\mathrm{t} 4->\mathrm{t} 6 \\
& \text { t1 }=\text { t6 -> t5 } \\
& t 5=t 7
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose (f,g) }=f n x=>f(g x) \\
& \text { compose : (t6 }->\text { t5) } *(\mathrm{t} 4 \rightarrow>\mathrm{t} 6) \rightarrow>\mathrm{t} 3 \\
& \text { f : t6 -> t5 } \\
& \mathrm{g}: \mathrm{t} 4 \mathrm{->} \mathrm{t} 6 \\
& x: t 4 \\
& t 3=t 4->t 5 \\
& \mathrm{t} 2=\mathrm{t} 4->\mathrm{t} 6 \\
& \text { t1 }=\text { t6 -> t5 } \\
& t 5=t 7
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose (f,g) = fn } x=>f(g x) \\
& \text { compose : (t6 -> t5) * (t4 -> t6) -> t3 } \\
& \text { f : t6 -> t5 } \\
& \mathrm{g} \text { : t4 -> t6 } \\
& t 3=t 4->t 5 \\
& x \text { : t4 } \\
& t 2=t 4->t 6 \\
& t 1=t 6->~ t 5 \\
& t 5=t 7
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose (f,g) = fn } x=>f(g x) \\
& \text { compose : (t6 -> t5) * (t4 -> t6) -> (t4 -> t5) } \\
& \text { f : t6 -> t5 } \\
& g \text { : t4 -> t6 } \\
& x \text { : t4 -> t5 } \\
& t 3=t 4->t 5 \\
& t 2=t 4->t 6 \\
& t 1=t 6->t 5 \\
& t 5=t 7
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose (f,g) = fn } x=>f(g \text {) } \\
& \text { compose : (t6 -> t5) * (t4 -> t6) -> (t4 }->\text { t5) } \\
& \text { f : t6 -> t5 } \\
& g: t 4->t 6 \\
& x \text { : t4 -> t5 } \\
& \begin{array}{l}
t 3=t 4->t 5 \\
t 2=t 4->t 6 \\
t 1=t 6->t 5 \\
t 5=t 7
\end{array}
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose }(f, g)=f n x=>f(g x) \\
& \text { compose: ('a } \left.->{ }^{\prime} \mathbf{b}\right) \star\left({ }^{\prime} \mathbf{c}->{ }^{\prime} \mathbf{a}\right) \rightarrow>\left({ }^{\prime} \mathbf{c}->{ }^{\prime} \mathbf{b}\right) \\
& \text { f : t6 }->\text { t5 } \\
& g: t 4->t 6 \quad t 3=t 4->t 5 \\
& \mathrm{x} \text { : t4 -> t5 } \\
& t 2=t 4->t 6 \\
& t 1=t 6->t 5 \\
& t 5=t 7
\end{aligned}
$$

Type inference: compose

$$
\begin{aligned}
& \text { fun compose (f,g) }=f n \mathrm{x}=>\mathrm{f}(\mathrm{~g} \mathrm{x}) \\
& \text { compose : ('a -> 'b) * ('c -> 'a) -> ('c -> 'b) } \\
& \text { f : t6 -> t5 } \\
& g: t 4->t 6 \quad t 3=t 4->t 5 \\
& \mathrm{x} \text { : t4 -> t5 } \\
& t 2=t 4->t 6 \\
& t 1=t 6->~ t 5 \\
& t 5=t 7 \\
& \text { compose : (} \mathbf{b} \text {-> `c) * (`a -> 'b) -> ('a -> 'c) }
\end{aligned}
$$

Type inference: broken sum

```
    fun sum xs =
        case xs of
        [] => 0
    x::xs' => x + (sum x)
sum : t1 -> t2
    xs : t1
```


Type inference: broken sum

```
    fun sum xs =
        case xs of
                        [] => 0
                            | x::xs' => x + (sum x)
sum : t1 -> t2
    t1 = t5 list
    xs : t1
```


Type inference: broken sum

```
    fun sum xs =
        case xs of
                        [] => 0
                            | x::xS' => x + (sum x)
sum : t1 -> t2
t1 = t5 list
xs : t1
t2 = int
```


Type inference: broken sum

$$
\begin{gathered}
\text { fun sum xs = } \\
\text { case xs of } \\
{[]=>0} \\
\mid x:: x s^{\prime}=>x+(\text { sum } x) \\
\text { sum : t1 }->t 2 \\
x: t 1
\end{gathered}
$$

Type inference: broken sum

```
    fun sum xs =
        case xs of
                        [] => 0
    | x::xS' => x + (sum x)
sum : t1 -> t2
    t1 = t5 list
    xs : t1
    x : t3
xs' : t4
```


Type inference: broken sum

```
    fun sum xs =
        case xs of
                        [] => 0
                            | x::xs' => x + (sum x)
sum : t1 -> t2
    t1 = t5 list
    xs : t1
    x : t3
xs' : t4
```


Type inference: broken sum

```
    fun sum xs =
        case xs of
        [] => 0
        x::xs' => x + (sum x)
```

sum : t1 $->$ t2
XS : t1
$x: t 3$
$X S^{\prime}: \quad$ t4

```
\[
\begin{aligned}
\mathrm{t} 1 & =\mathrm{t} 5 \quad \text { list } \\
\mathrm{t} 2 & =\text { int } \\
\mathrm{t} 3 & =\mathrm{t} 5 \\
\mathrm{t} 4 & =\mathrm{t} 5 \quad \text { list }
\end{aligned}
\]
```


Type inference: broken sum

```
    fun sum xs =
        case xs of
        [] => 0
        x::xs' => x + (sum x)
```

sum : t1 $->$ t2
XS : t1
$x: t 3$
$X S^{\prime}: \quad$ t 4

$$
\begin{aligned}
\mathrm{t} 1 & =\mathrm{t} 5 \quad \text { list } \\
\mathrm{t} 2 & =\text { int } \\
\mathrm{t} 3 & =\mathrm{t} 5 \\
\mathrm{t} 4 & =\mathrm{t} 5 \quad \text { list } \\
\mathrm{t} 3 & =\text { int }
\end{aligned}
$$

Type inference: broken sum

Type inference: sum

```
fun sum \(\mathrm{xs}=\)
    case xs of
    [] \(=>0\)
    \(x:: x s^{\prime}=>x+(\) sum \(x)\)
```

sum : t1 $->$ t2
xs : t1
$x: \quad$:1
$X S^{\prime}: \quad$ t4

$$
\begin{aligned}
\mathrm{t} 1 & =\mathrm{t} 5 \quad \text { list } \\
\mathrm{t} 2 & =\mathrm{int} \\
\mathrm{t} 1 & =\mathrm{t} 5 \\
\mathrm{t} 4 & =\mathrm{t} 5 \\
\mathrm{t} 1 & =\text { list } \\
\mathrm{t} 1 & =\mathrm{t} 3
\end{aligned}
$$

Type inference: sum

Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xs' => x + (sum x)
```

sum	$:$ int $->$ t2
$x S$	$:$ int
x	$:$ int
$X S^{\prime}$	$:$ t4

$$
\begin{aligned}
\text { int } & =t 5 \quad \text { list } \\
\text { t2 } & =\text { int } \\
\text { int } & =t 5 \\
t 4 & =t 5 \quad \text { list } \\
\text { t1 } & =\text { int } \\
\text { t1 } & =t 3
\end{aligned}
$$

Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xs' => x + (sum x)
```

sum	$:$ int $->$ t2
$x S$	$:$ int
x	$:$ int
$X S^{\prime}$	$: t 4$

$$
\begin{aligned}
\text { int } & =\text { t5 list } \\
\text { t2 } & =\text { int } \\
\text { int } & =t 5 \\
t 4 & =t 5 \quad \text { list } \\
t 1 & =\text { int } \\
t 1 & =t 3
\end{aligned}
$$

Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xs' => x + (sum x)
```

sum	$:$ int $->$ t2
$x S$: int
x	$:$ int
$X S^{\prime}$	$:$ t5 list

$$
\begin{array}{rlr}
\text { int } & =\text { t5 list } \\
\text { t2 } & =\text { int } & \\
\text { int } & =t 5 \\
t 4 & =t 5 \quad \text { list } \\
t 1 & =\text { int } \\
t 1 & =t 3
\end{array}
$$

Type inference: sum

```
fun sum xs =
    case xs of
        [] => 0
        x::xs' => x + (sum x)
```

sum	$:$ int $->$ t2
$x S$	$:$ int
x	$:$ int
$X S '^{\prime}$	$:$ t5 list

$$
\begin{array}{rlr}
\text { int } & =\text { t5 list } \\
\text { t2 } & =\text { int } & \\
\text { int } & =t 5 & \\
t 4 & =t 5 \quad \text { list } \\
t 1 & =\text { int } \\
t 1 & =t 3
\end{array}
$$

Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xS' => x + (sum x)
```

```
sum : int-> t2
    XS : int
    x : int
Xs' : int list
```

$\begin{aligned} \text { int } & =\text { int list } \\ \text { t2 } & =\text { int }\end{aligned}$
int $=$ t5
t4 $=$ t5 list
t1 $=$ int
$t 1=t 3$

Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xs' => x + (sum x)
```

```
sum : int-> t2
    XS : int
    x : int
XS' : int list
```

```
\(\begin{aligned} \text { int } & =\text { int list } \\ \text { t2 } & =\text { int }\end{aligned}\)
int \(=\) t5
t4 \(=\) t5 list
t1 \(=\) int
t1 \(=t 3\)
```


Type inference: sum

```
fun sum xs =
    case xs of
    [] => 0
    x::xS' => x + (sum x)
```

```
sum : int-> int
    XS : int
    x : int
XS' : int list
```

```
\(\begin{aligned} \text { int } & =\text { int list } \\ \text { t2 } & =\text { int }\end{aligned}\)
    int \(=t 5\)
    t \(4=\) t5 list
    t1 = int
    \(t 1=t 3\)
```


Type inference: sum

```
fun sum xs =
    case xs of
        [] => 0
        x::xS' => x + (sum x)
```

```
sum : int-> int
    XS : int
    x : int
XS' : int list
```

```
int \(=\) int list
```

 七2 = int
 int \(=t 5\)
 七1 = int
 \(t 1=t 3\)

Parting comments on ML type inference

- You almost never have to write types in ML (even on parameters), with some minor caveats.
- Hindley-Milner type inference algorithm
- ML has no subtyping. If it did, the equality constraints we used for inference would be overly restrictive.
- Type variables and inference are not tied to each. Some languages have one without the other.
- Type variables alone allow convenient code reuse.
- Without type variables, we cannot give a type to compose until we see it used.

