
CSE341: Programming Languages

Lecture 22
Multiple Inheritance, Interfaces, Mixins

Dan Grossman
Fall 2011

What next?

Have used classes for OOP's essence: inheritance, overriding,
dynamic dispatch

Now, what if we want to have more than just 1 superclass

• Multiple inheritance: allow > 1 superclasses
– Useful but has some problems (see C++)

• Java-style interfaces: allow > 1 types
– Mostly irrelevant in a dynamically typed language, but fewer

problems

• Ruby-style mixins: 1 superclass; > 1 method providers
– Often a fine substitute for multiple inheritance and has fewer

problems

Fall 2011 2 CSE341: Programming Languages

Multiple Inheritance

• If inheritance and overriding are so useful, why limit ourselves to one
superclass?
– Because the semantics is often awkward (next couple slides)
– Because it makes static type-checking harder (not discussed)
– Because it makes efficient implementation harder (not discussed)

• Is it useful? Sure!

– Example: Make a ColorPt3D by inheriting from Pt3D and
ColorPt (or maybe just from Color)

– Example: Make a StudentAthlete by inheriting from Student
and Athlete

– With single inheritance, end up copying code or using non-OOP-
style helper methods

Fall 2011 3 CSE341: Programming Languages

Trees, dags, and diamonds

• Note: The phrases subclass, superclass can be ambiguous
– There are immediate subclasses, superclasses
– And there are transitive subclasses, superclasses

• Single inheritance: the class hierarchy is a tree

– Nodes are classes
– Parent is immediate superclass
– Any number of children allowed

• Multiple inheritance: the class hierarchy no longer a tree

– Cycles still disallowed (a directed-acyclic graph)
– If multiple paths show that X is a (transitive) superclass

of Y, then we have diamonds
Fall 2011 4 CSE341: Programming Languages

A

B C D

E

X

Y

V W
Z

What could go wrong?

• If V and Z both define a method m,
 what does Y inherit? What does super mean?

– Directed resends useful (e.g., Z::super)

• What if X defines a method m that Z but not V overrides?
– Can handle like previous case, but sometimes undesirable

(e.g., ColorPt3D wants Pt3D's overrides to "win")

• If X defines fields, should Y have one copy of them (f) or two
(V::f and Z::f)?
– Turns out each behavior is sometimes desirable (next slides)
– So C++ has (at least) two forms of inheritance

Fall 2011 5 CSE341: Programming Languages

X

Y

V W
Z

3DColorPoints
If Ruby had multiple inheritance, we would want ColorPt3D to
inherit methods that share one @x and one @y

Fall 2011 6 CSE341: Programming Languages

class Pt
 attr_accessor :x, :y
 …
end
class ColorPt < Pt
 attr_accessor :color
 …
end
class Pt3D < Pt
 attr_accessor :z
 … # override methods like distance?
end
class ColorPt3D < Pt3D, ColorPt # not Ruby!
end

ArtistCowboys
This code has Person define a pocket for subclasses to use, but
an ArtistCowboy wants two pockets, one for each draw method

Fall 2011 7 CSE341: Programming Languages

class Person
 attr_accessor :pocket
 …
end
class Artist < Person # pocket for brush objects
 def draw # access pocket
 …
end
class Cowboy < Person # pocket for gun objects
 def draw # access pocket
 …
end
class ArtistCowboy < Artist, Cowboy # not Ruby!
end

Java interfaces
Recall (?), Java lets us define interfaces that classes explicitly
implement

Fall 2011 8 CSE341: Programming Languages

interface Example {
 void m1(int x, int y);
 Object m2(Example x, String y);
}

class A implements Example {
 public void m1(int x, int y) {…}
 public Object m2(Example e, String s) {…}
}
class B implements Example {
 public void m1(int pizza, int beer) {…}
 public Object m2(Example e, String s) {…}
}

What is an interface?

• An interface is a type!
– Any implementer (including subclasses) is a subtype of it
– Can use an interface name wherever a type appears
– (In Java, classes are also types in addition to being classes)

• An implementer type-checks if it defines the methods as required
– Parameter names irrelevant to type-checking; it's a bit strange

that Java requires them in interface definitions
• A user of type Example can objects with that type have the

methods promised
– I.e., sending messages with appropriate arguments type-checks

Fall 2011 9 CSE341: Programming Languages

interface Example {
 void m1(int x, int y);
 Object m2(Example x, String y);
}

Multiple interfaces

• Java classes can implement any number of interfaces

• Because interfaces provide no methods or fields, no questions of
method/field duplication arise
– No problem if two interfaces both require of implementers and

promise to clients the same method

• Such interfaces aren't much use in a dynamically typed language
– We don't type-check implementers
– We already allow clients to send any message
– Presumably these types would change the meaning of is_a?,

but we can just use instance_methods to find out what
methods an object has

Fall 2011 10 CSE341: Programming Languages

Why no interfaces in C++?

If you have multiple inheritance and abstract methods (called pure
virtual methods in C++), there is no need for interfaces

• Abstract method: A method declared but not defined in a class.
All instances of the (sub)class must have a definition

• Abstract class: Has one or more abstract methods; so disallow
creating instances of this exact class
– Have to subclass and implement all the abstract methods to

create instances

• Little point to abstract methods in a dynamically typed language

• In C++, instead of an interface, make a class with all abstract
methods and inherit from it – same effect on type-checking

Fall 2011 11 CSE341: Programming Languages

Mixins

• A mixin is (just) a collection of methods
– Less than a class: no fields, constructors, instances, etc.
– More than an interface: methods have bodies

• Languages with mixins (e.g., Ruby modules) typically allow a

class to have one superclass but any number of mixins

• Semantics: Including a mixin makes its methods part of the class
– Extending or overriding in the order mixins are included in the

class definition
– More powerful than helper methods because mixin methods

can access methods (and instance variables) on self not
defined in the mixin

Fall 2011 12 CSE341: Programming Languages

Example

Fall 2011 13 CSE341: Programming Languages

module Doubler
 def double
 self + self # assume included in classes w/ +
 end
end
class String
 include Doubler
end
class AnotherPt
 attr_accessor :x, :y
 include Doubler
 def + other
 ans = AnotherPt.new
 ans.x = self.x + other.x
 ans.y = self.y + other.y
 ans
end

Lookup rules

Mixins change our lookup rules slightly:

• When looking for receiver obj0's method m, look in obj0's class,

then mixins that class includes (later includes shadow), then
obj0's superlcass, then the superclass' mixins, etc.

• As for instance variables, the mixin methods are included in the
same object
– So usually bad style for mixin methods to use instance

variables since a name clash would be like our CowboyArtist
pocket problem (but sometimes unavoidable?)

Fall 2011 14 CSE341: Programming Languages

The two big ones

The two most popular/useful mixins in Ruby:

• Comparable: Defines <, >, ==, !=, >=, <= in terms of <=>

• Enumerable: Defines many iterators (e.g., map, find) in terms of
each

Great examples of using mixins:
– Classes including them get a bunch of methods for just a

little work
– Classes do not "waste" their "one superclass" for this
– Do not need the complexity of multiple inheritance

• See lec22.rb for some example uses

Fall 2011 15 CSE341: Programming Languages

Replacement for multiple inheritance?
• A mixin probably works well for ColorPt3D:

– Color a reasonable mixin except for using an instance variable

• A mixin works awkwardly-at-best for ArtistCowboy:
– Natural for Artist and Cowboy to be Person subclasses
– Could move methods of one to a mixin, but it is odd style and

still doesn't get you two pockets

Fall 2011 16 CSE341: Programming Languages

module Color
 attr_accessor :color
end

module ArtistM …
class Artist < Person
 include ArtistM
class ArtistCowboy < Cowboy
 include ArtistM

