

CSE341: Programming Languages Lecture 22 Multiple Inheritance, Interfaces, Mixins

Dan Grossman Fall 2011

What next?

Have used classes for OOP's essence: inheritance, overriding, dynamic dispatch

Now, what if we want to have more than just 1 superclass

- Multiple inheritance: allow > 1 superclasses
 - Useful but has some problems (see C++)
- Java-style interfaces: allow > 1 types
 - Mostly irrelevant in a dynamically typed language, but fewer problems
- Ruby-style mixins: 1 superclass; > 1 method providers
 - Often a fine substitute for multiple inheritance and has fewer problems

Fall 2011 CSE341: Programming Languages

Multiple Inheritance

- If inheritance and overriding are so useful, why limit ourselves to one superclass?
 - Because the semantics is often awkward (next couple slides)
 - Because it makes static type-checking harder (not discussed)
 - Because it makes efficient implementation harder (not discussed)
- Is it useful? Sure!
 - Example: Make a ColorPt3D by inheriting from Pt3D and ColorPt (or maybe just from Color)
 - Example: Make a StudentAthlete by inheriting from Student and Athlete
 - With single inheritance, end up copying code or using non-OOPstyle helper methods

Fall 2011 CSE341: Programming Languages

Trees, dags, and diamonds

- Note: The phrases subclass, superclass can be ambiguous
 - There are immediate subclasses, superclasses
 - And there are transitive subclasses, superclasses
- Single inheritance: the class hierarchy is a tree
 - Nodes are classes
 - Parent is immediate superclass
 - Any number of children allowed
- · Multiple inheritance: the class hierarchy no longer a tree
 - Cycles still disallowed (a directed-acyclic graph)
 - If multiple paths show that X is a (transitive) superclass of Y, then we have diamonds

2011 CSE341: Programming Languages

E X ee V W class Z

What could go wrong?

- If V and Z both define a method m, what does Y inherit? What does super mean?
 - Directed resends useful (e.g., Z::super)
- What if X defines a method m that Z but not V overrides?
 - Can handle like previous case, but sometimes undesirable (e.g., ColorPt3D wants Pt3D's overrides to "win")
- If X defines fields, should Y have one copy of them (f) or two (V::f and Z::f)?
 - Turns out each behavior is sometimes desirable (next slides)

5

- So C++ has (at least) two forms of inheritance

3DColorPoints

If Ruby had multiple inheritance, we would want ColorPt3D to inherit methods that share one @x and one @y

```
class Pt
   attr_accessor :x, :y
...
end
class ColorPt < Pt
   attr_accessor :color
...
end
class Pt3D < Pt
   attr_accessor :z
... # override methods like distance?
end
class ColorPt3D < Pt3D, ColorPt # not Ruby!
end</pre>
```

Fall 2011 CSE341: Programming Languages

ArtistCowboys

This code has Person define a pocket for subclasses to use, but an ArtistCowboy wants two pockets, one for each draw method

```
class Person
   attr_accessor :pocket
   ...
end
class Artist < Person # pocket for brush objects
   def draw # access pocket
   ...
end
class Cowboy < Person # pocket for gun objects
   def draw # access pocket
   ...
end
class ArtistCowboy < Artist, Cowboy # not Ruby!
end</pre>
```

CSE341: Programming Languages

What is an interface?

```
interface Example {
  void   m1(int x, int y);
  Object m2(Example x, String y);
}
```

An interface is a type!

Fall 2011

- Any implementer (including subclasses) is a subtype of it
- Can use an interface name wherever a type appears
- (In Java, classes are also types in addition to being classes)
- · An implementer type-checks if it defines the methods as required
 - Parameter names irrelevant to type-checking; it's a bit strange that Java requires them in interface definitions
- A user of type Example can objects with that type have the methods promised
 - I.e., sending messages with appropriate arguments type-checks

Fall 2011 CSE341: Programming Languages 9

Java interfaces

Recall (?), Java lets us define *interfaces* that classes explicitly *implement*

```
interface Example {
  void    m1(int x, int y);
   Object m2(Example x, String y);
}

class A implements Example {
  public void m1(int x, int y) {...}
   public Object m2(Example e, String s) {...}
}

class B implements Example {
  public void m1(int pizza, int beer) {...}
  public Object m2(Example e, String s) {...}
}
```

Fall 2011

CSE341: Programming Languages

Multiple interfaces

- · Java classes can implement any number of interfaces
- Because interfaces provide no methods or fields, no questions of method/field duplication arise
 - No problem if two interfaces both require of implementers and promise to clients the same method
- · Such interfaces aren't much use in a dynamically typed language
 - We don't type-check implementers
 - We already allow clients to send any message
 - Presumably these types would change the meaning of is_a?, but we can just use instance_methods to find out what methods an object has

Fall 2011

CSE341: Programming Languages

10

12

Why no interfaces in C++?

If you have multiple inheritance and abstract methods (called pure virtual methods in C++), there is no need for interfaces

- Abstract method: A method declared but not defined in a class.
 All instances of the (sub)class must have a definition
- Abstract class: Has one or more abstract methods; so disallow creating instances of this exact class
 - Have to subclass and implement all the abstract methods to create instances
- · Little point to abstract methods in a dynamically typed language
- In C++, instead of an interface, make a class with all abstract methods and inherit from it – same effect on type-checking

Mixins

- · A mixin is (just) a collection of methods
 - Less than a class: no fields, constructors, instances, etc.
 - More than an interface: methods have bodies
- Languages with mixins (e.g., Ruby modules) typically allow a class to have one superclass but any number of mixins
- Semantics: Including a mixin makes its methods part of the class
 - Extending or overriding in the order mixins are included in the class definition
 - More powerful than helper methods because mixin methods can access methods (and instance variables) on self not defined in the mixin

Fall 2011 CSE341: Programming Languages 11 Fall 2011 CSE341: Programming Languages

Example

```
module Doubler
   def double
     self + self # assume included in classes w/ +
 end
 class String
   include Doubler
 class AnotherPt
   attr accessor :x, :y
   include Doubler
   def + other
     ans = AnotherPt.new
     ans.x = self.x + other.x
     ans.y = self.y + other.y
 end
                                                     13
Fall 2011
                  CSE341: Programming Languages
```

Lookup rules

Mixins change our lookup rules slightly:

- When looking for receiver obj0's method m, look in obj0's class, then mixins that class includes (later includes shadow), then obj0's superlcass, then the superclass' mixins, etc.
- · As for instance variables, the mixin methods are included in the same object
 - So usually bad style for mixin methods to use instance variables since a name clash would be like our CowboyArtist pocket problem (but sometimes unavoidable?)

Fall 2011 CSE341: Programming Languages

The two big ones

The two most popular/useful mixins in Ruby:

- Comparable: Defines <, >, ==, !=, >=, <= in terms of <=>
- Enumerable: Defines many iterators (e.g., map, find) in terms of each

Great examples of using mixins:

Fall 2011

- Classes including them get a bunch of methods for just a little work

CSE341: Programming Languages

15

- Classes do not "waste" their "one superclass" for this
- Do not need the complexity of multiple inheritance
- See lec22.rb for some example uses

Replacement for multiple inheritance?

- A mixin probably works well for ColorPt3D:
 - Color a reasonable mixin except for using an instance variable

```
module Color
attr accessor :color
end
```

- A mixin works awkwardly-at-best for ArtistCowboy:
 - Natural for Artist and Cowboy to be Person subclasses
 - Could move methods of one to a mixin, but it is odd style and still doesn't get you two pockets

module ArtistM class Artist < Person include ArtistM class ArtistCowboy < Cowboy</pre> include ArtistM

16

Fall 2011 CSE341: Programming Languages