
CSE341: Programming Languages

Lecture 24
Racket Modules, Abstraction with
Dynamic Types; Racket Contracts

Dan Grossman
Fall 2011

Another modules lecture

• Recall lecture 12: SML modules. Key points:
– Namespace management for larger programs (structures)
– Hiding bindings inside the module (gcd, reduce)
– Using an abstract type to enforce invariants

Fall 2011 2 CSE341: Programming Languages

signature RATIONAL =
sig
type rational
exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string
end

structure Rational :> RATIONAL = …

Racket is different

• More flexible namespace management
– Convenient ways to rename during export/import
– (In other languages, could write wrapper modules)

• Dynamic typing still has ways to create abstract types
– Just need to be able to make a new type at run-time
– This is what struct does; Scheme has nothing like it

• By default, each file is a module
– Not necessary but convenient

• State-of-the-art contract system
– Arbitrary dynamic checks of cross-module calls with blame

assignment

Fall 2011 3 CSE341: Programming Languages

But first…

Worth emphasizing that modules are not necessary for creating
abstract types: local scope and closures are enough

Recall our rationals example (but note Racket has built-in rationals):

Interface:
– make-frac rejects 0 denominator
– add adds two rationals
– print-rat prints a rational in reduced form

Can implement this by maintaining these invariants:
– num and den fields kept in reduced form
– den is always positive

Fall 2011 4 CSE341: Programming Languages

Wrong approach [see lec24_non_modules.rkt]

This uses local scope to hide gcd and reduce, but it exposes the rat
constructor, so clients can make bad rationals

– So to be "safe", add and print-rat can re-check invariants

Fall 2011 5 CSE341: Programming Languages

(struct (rat num den)

(define rat-funs
 (letrec
 ([gcd (lambda (x y) …)]
 [reduce (lambda (x y) …)]
 [make-frac (lambda (x y) …)]
 [add (lambda (r1 r2) …)]
 [print-rat (lambda (r) …)])
 (list make-frac add print-rat)))

(define make-frac (car rat-funs))
(define add (cadr rat-funs))
(define print-rat (caddr rat-funs))

Right approach [see lec24_non_modules.rkt]

So we also need to hide the rat constructor!
– Also hide mutators if you create them
– Choose to hide accessors to keep representation opaque
– This code doesn't "export" rat?, but doing so a good idea

Fall 2011 6 CSE341: Programming Languages

(define rat-funs
 (let ()
 (struct (rat num den)
 (define (gcd x y) …)
 (define (reduce x y) …)
 (define (make-frac x y) …)
 (define (add r1 r2) …)
 (define (print-rat r) …)
 (list make-frac add print-rat)))

(define make-frac (car rat-funs))
(define add (cadr rat-funs))
(define print-rat (caddr rat-funs))

The key trick
• By hiding the constructor and accessors, clients cannot make

rationals or access their pieces directly

• Clients can still pass non-rationals to add or print-rat, but
any rational will satisfy the invariants

• Technique requires fundamentally on semantics of struct
– Make a new (dynamic) type of thing
– If struct were sugar for cons cells, then clients could use
cons to make bad rationals

• So… to support abstract datatypes, dynamically typed
languages need ways to make "new types of things"
– Scheme traditionally had no such support

• Again, making rat? public makes perfect sense

Fall 2011 7 CSE341: Programming Languages

Racket modules

• The normal and convenient way puts bindings in a file and
provides only the ones that should be public
– Unlike SML, no separate notion of signature – module

decides what to provide

• Default is private
– (But REPL for "Run" of a file is "inside" that file's module)
– Which is why previous lectures used
 (provide (all-provided-out))
– Can provide some of struct's functions

• See lec24_rationals.rkt

– (provide make-frac add print-rat rat?)

Fall 2011 8 CSE341: Programming Languages

It's the same trick

• Modules take care of hiding bindings

• struct takes care of making a new type

• This doesn't work if rationals are implemented with an existing

type like cons
– Clients could use cons? to figure that out and then make

bad rationals

• Common misconception: Dynamically typed languages can't
support abstract types
– Some may not, but they could

Fall 2011 9 CSE341: Programming Languages

Using modules [see lec24_client.rkt]

• Clients get a module's bindings with the require form
– Many variations, using a file-name string is the simplest

– Can also get only the bindings you want, either by listing
them with the only-in syntax or listing what you don't want
with the except-in syntax

• Convenient for avoiding name conflicts
• See the manual for details

– Can also rename bindings: rename-in and prefix-in
• The provider can also rename when exporting

• Overall: convenient namespace management is a nice thing

Fall 2011 10 CSE341: Programming Languages

(require "rationals.rkt")

Contracts

• A contract is a pre- and post-condition for a function
– Software methodology of "design-by-contract"
– If a function fails, blame either the caller or callee

• Old idea; Racket's modules on the cutting edge

• Can provide functions with a contract
– Any predicate (boolean-returning function) on arguments

and result
– Any cross-module call will have its arguments and result

checked at run-time (could be expensive) to assign blame
• Intra-module calls (e.g., recursion) not checked

• (You're not responsible for the details, just the high-level idea)

Fall 2011 11 CSE341: Programming Languages

Example
lec24_rationals_contracts.rkt provides another
implementation of a rationals library with contracts on each export

It maintains different (weaker) invariants, putting more work on
clients, with contracts checking that work:

• Exports rat constructor, but contract requires integer
arguments and positive denominator from client
– Maintains these invariants

• Exports rat-num, rat-den, and rat?
• Does not keep rationals in reduced form

– add doesn't care and doesn't reduce
– print-rat does care (contract checks it); up to client to

either call reduce-rat or "know" the rational is reduced

 Fall 2011 12 CSE341: Programming Languages

Example provide (Note: needs DrRacket 5.2)

• contract-out exports bindings with given contracts
• -> takes predicate functions for each argument/result and

checks them on inter-module calls at run-time
– Can use library functions or our own (e.g., reduced-rat)

• Client must satisfy argument contracts and can assume result
contracts

Fall 2011 13 CSE341: Programming Languages

(provide (contract-out
 (rat (-> integer?
 (lambda(y)(and(integer? y)(> y 0)))
 rat?)
 (rat-num (-> rat? integer?))
 (rat-den (-> rat? integer?))
 (rat? (-> any/c boolean?))
 (add (-> rat? rat? rat?))
 (print-rat (-> reduced-rat void?))
 (reduce-rat (-> rat? reduced-rat))))

Contracts vs. invariants

• If you set up strong abstractions and maintain invariants, then
you need to do less run-time contract checking
– Example: No need for reduced-rat to check that the

rational fields are integers with positive denominator

• This is more efficient: only check dynamically what could fail if
"the other party in the contract" is wrong
– Of course, "redundant" checks are less redundant if your

abstractions are leaky due to poor design / bugs

• Invariants are not an argument against contracts
– The two are for different purposes, as in our example

Fall 2011 14 CSE341: Programming Languages

