Review

- Building up SML one construct at a time via precise definitions
- Constructs have syntax, type-checking rules, evaluation rules
- And reasons they're in the language
- Evaluation converts an expression to a value
- So far:
- Variable bindings
- Several expression forms: addition, conditionals, ...
- Several types: int bool unit
- Today:
- Brief discussion on aspects of learning a PL
- Functions, pairs, and lists [almost enough for all of HW1]

Five different things

1. Syntax: How do you write language constructs?
2. Semantics: What do programs mean? (Evaluation rules)
3. Idioms: What are typical patterns for using language features to express your computation?
4. Libraries: What facilities does the language (or a well-known project) provide "standard"? (E.g., file access, data structures)
5. Tools: What do language implementations provide to make your job easier? (E.g., REPL, debugger, code formatter, ...)

These are 5 separate issues

- In practice, all are essential for good programmers
- Many people confuse them, but shouldn't

Function definitions

Functions: the most important building block in the whole course

- Like Java methods, have arguments and result
- But no classes, this, return, etc.

Example function binding:

```
(* Note: correct only if y>=0 *)
fun pow (x : int, y : int) =
    if y=0
    then 1
    else x * pow(x,y-1)
```

Note: The body includes a (recursive) function call: pow (x,y-1)

Our Focus

This course focuses on semantics and idioms

- Syntax is usually uninteresting
- A fact to learn, like "The American Civil War ended in 1865"
- People obsess over subjective preferences [yawn]
- Libraries and tools crucial, but often learn new ones on the job
- We're learning language semantics and how to use that knowledge to do great things

Function bindings: 3 questions

- Syntax: fun $x 0(x 1: t 1, \ldots, x n: t n)=e$ - (Will generalize in later lecture)
- Evaluation: A function is a value! (No evaluation yet)
- Adds $\mathbf{x 0}$ to environment so later expressions can call it
- (Function-call semantics will also allow recursion)
- Type-checking:
- Adds binding $x 0$: (t 1 * ... * tn) $->\mathrm{t}$ if:
- Can type-check body e to have type t in the static environment containing:
- "Enclosing" static environment (earlier bindings)
- $\mathbf{x 1}: \mathrm{t} 1, \ldots, \mathrm{xn}: \mathrm{tn}$ (arguments with their types)
- $x 0$: ($\mathrm{t} 1 \times \ldots$ * tn) $->\mathrm{t}$ (for recursion)

More on type-checking

fun $x 0(x 1: t 1, \ldots, x n: t n)=e$

- New kind of type: (t 1 * ... * tn) $->\mathrm{t}$
- Result type on right
- The overall type-checking result is to give $\mathbf{x 0}$ this type in rest of program (unlike Java, not for earlier bindings)
- Arguments can be used only in e (unsurprising)
- Because evaluation of a call to $\mathbf{x 0}$ will return result of evaluating e, the return type of $\mathbf{x 0}$ is the type of e
- The type-checker "magically" figures out t if such a t exists
- Later lecture: Requires some cleverness due to recursion
- More magic after hw1: Later can omit argument types too

Function-calls continued

$$
e 0(e 1, \ldots, e n)
$$

Evaluation:

1. (Under current dynamic environment,) evaluate e0 to a function fun $\mathrm{x} 0(\mathrm{x} 1: t 1, \ldots, \mathrm{xn}: t n)=e$

- Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values v1, ..., vn
3. Result is evaluation of e in an environment extended to map $\mathbf{x 1}$ to $v 1, \ldots, x n$ to $v n$

- ("An environment" is actually the environment where the function was defined, and includes $\mathbf{x} 0$ for recursion)

Function Calls

A new kind of expression: 3 questions

Syntax: e0 (e1,...,en)

- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:
If:

- e0 has some type (t 1 * ... * tn) $->\mathrm{t}$
- e1 has type t1, \ldots, en has type tn

Then:

- e0 (e1,...,en) has type t

Example: pow ($\mathbf{x}, \mathbf{y}^{-1}$) in previous example has type int

Fall 2011

```
fun pow (x : int, y : int) =
    if y=0
    then 1
    else x * pow(x,y-1)
fun cube (x : int) =
    pow (x,3)
val sixtyfour = cube 4
val fortytwo = pow(2,4) + pow(4,2) + cube(2) + 2
```


Recursion

- If you're not yet comfortable with recursion, you will be soon \odot - Will use for most functions taking or returning lists
- "Makes sense" because calls to same function solve "simpler" problems
- Recursion more powerful than loops
- We won't use a single loop in ML
- Loops often (not always) obscure simple, elegant solutions

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions

- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Rest of lecture:

- Tuples: fixed "number of pieces" that may have different types
- Lists: any "number of pieces" that all have the same type

Later: Other more general ways to create compound data

Pairs (2-tuples)

We need a way to build pairs and a way to access the pieces

Build:

- Syntax: (e1,e2)
- Evaluation: Evaluate e1 to v1 and e2 to v2; result is (v1, v2)
- A pair of values is a value
- Type-checking: If e1 has type t1 and e2 has type t2, then the pair expression has type t1 * t2
- A new kind of type, the pair type

Pairs (2-tuples)

We need a way to build pairs and a way to access the pieces

Access:

- Syntax: \#1 e and \#2 e
- Evaluation: Evaluate e to a pair of values and return first or second piece
- Example: If \mathbf{e} is a variable \mathbf{x}, then look up \mathbf{x} in environment
- Type-checking: If e has type ta * tb, then \#1 e has type ta and \#2 e has type tb

Tuples

Actually, you can have tuples with more than two parts

- A new feature: a generalization of pairs
- (e1,e2,...,en)
- t1 * t2 * ... * tn
- \#1 e, \#2 e, \#3 e, ...

Homework 1 uses triples of type int*int*int a lot

Examples

Functions can take and return pairs

```
fun swap (pr : int*bool) =
    (#2 pr, #1 pr)
fun sum_two pairs (pr1 : int*int, pr2 : int*int) =
    (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)
fun div_mod (x : int, y : int) =
    (x div y, x mod y)
```


Nesting

Pairs and tuples can be nested however you want

- Not a new feature: implied by the syntax and semantics

```
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
    (* (int*int)*((int*int)*(int*int)) *)
```


Lists

- Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data
- In contrast, a list can have any number of elements
- But unlike tuples, all elements have the same type

Need ways to build lists and access the pieces...

Building Lists

- The empty list is a value:

[]

- In general, a list of values is a value; elements separated by commas:

$$
[\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}]
$$

- If e1 evaluates to v and $e 2$ evaluates to a list [$\mathrm{v} 1, \ldots, v n$], then $\mathrm{e} 1:: \mathrm{e} 2$ evaluates to $[\mathrm{v}, \ldots, \mathrm{vn}$]

```
e1::e2 (* pronounced "cons" *)
```


Type-checking list operations

Lots of new types: For any type t, the type t list describes lists where all elements have type t

- Examples: int list bool list int list list (int * int) list (int list * int) list
- So [] can have type t list list for any type
- SML uses type 'a list to indicate this ("quote a" or "alpha")
- For e1: : e2 to type-check, we need a t such that e1 has type t and e2 has type t list. Then the result type is t list
- null : 'a list -> bool
- hd : 'a list -> 'a
- tl : `a list -> 'a list
- (raise exception if e evaluates to [])
- Notice result is a list

Recursion again

Functions over lists are usually recursive

- Only way to "get to all the elements"
- What should the answer be for the empty list?
- What should the answer be for a non-empty list?
- Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive

- You create a list is out of smaller lists

Lists of pairs

Processing lists of pairs requires no new features. Examples:

```
fun sum_pair_list (lst: (int*int) list) =
    if null lst
    then 0
    else #1(hd lst) + #2 (hd lst) + sum_pair_list(tl lst)
fun firsts (lst: (int*int) list) =
    if null lst
    then []
    else #1(hd lst) :: firsts(tl lst)
fun seconds (lst: (int*int) list) =
    if null lst
    then []
    else #2(hd lst) :: seconds(tl lst)
fun sum pair list2 (lst: (int*int) list) =
    (sum_list (firsts lst)) + (sum_list (seconds lst))```

