CSE341: Programming Languages

Lecture 5
 Pattern-Matching

Dan Grossman

Fall 2011

Review

Datatype bindings and pattern-matching so far:

$$
\text { datatype } t=C 1 \text { of } t 1 \mid C 2 \text { of } t 2|\ldots| C n \text { of } t n
$$

Adds type t and constructors Ci of type ti->t

- $\mathbf{C i} \mathbf{v}$ is a value

```
case e of p1 => e1 | p2 => e2 | ... | pn => en
```

- Evaluate e to a value
- If pi is the first pattern to match the value, then result is evaluation of ei in environment extended by the match
- Pattern Ci(x1,..., xn) matches value Ci(v1,...,vn) and extends the environment with $\mathbf{x} 1$ to $\mathrm{v} 1 \ldots \mathrm{xn}$ to vn
- This lecture: many more kinds of patterns and ways to use them

Recursive datatypes

Datatype bindings can describe recursive structures

- Arithmetic expressions from last lecture
- Linked lists, for example:

```
datatype my_int_list = Empty
                            | Cons of int * my_int_list
val \(\mathrm{x}=\) Cons(4,Cons(23,Cons(2008,Empty)))
fun append_my_list (xs,ys) =
    case xs of
        Empty => ys
    | Cons(x, \(\left.x s^{\prime}\right)\) => Cons(x, append_my_list(xs',ys)
```


Options are datatypes

Options are just a predefined datatyping binding

- NONE and SOME are constructors, not just functions
- So use pattern-matching not isSome and valOf

```
fun inc_or_zero intoption =
    case intoption of
        NONE => O
        | SOME i => i+1
```


Lists are datatypes

Don't use hd, tl, or null either

- [] and :: are constructors too
- (strange syntax, particularly infix)

```
fun sum_list intlist =
    case intlist of
        [] => 0
            | head::tail => head + sum_list tail
fun append (xs,ys) =
    case xs of
            [] => ys
            | \(\mathrm{x}:: \mathrm{xs}^{\prime}\) => x :: append( \(\mathrm{xs}^{\prime}, \mathrm{ys}\) )
```


Why pattern-matching

- Pattern-matching is better for options and lists for the same reasons as for all datatypes
- No missing cases, no exceptions for wrong variant, etc.
- We just learned the other way first for pedagogy
- So why are null and tl predefined then?
- For passing as arguments to other functions (next week)
- Because sometimes they're really convenient
- But not a big deal: could define them yourself with case

Each-of types

So far have used pattern-matching for one of types because we needed a way to access the values

Pattern matching also works for records and tuples:

- The pattern ($\mathbf{x} 1, \ldots, x n$)
matches the tuple value ($\mathrm{v} 1, \ldots, \mathrm{vn}$)
- The pattern $\{f 1=x 1, \ldots, f n=x n\}$ matches the record value $\{f 1=v 1, \ldots, f n=v n\}$ (and fields can be reordered)

Example

This is poor style, but based on what I told you so far, the only way to use patterns

- Works but poor style to have one-branch cases

```
fun sum_triple triple =
    case triple of
        (x, y, z) => x + y + z
fun sum_stooges stooges =
    case stooges of
    {larry=x, moe=y, curly=z} => x + y + z
```


Val-binding patterns

- New feature: A val-binding can use a pattern, not just a variable
- (Turns out variables are just one kind of pattern, so we just told you a half-truth in lecture 1)

$$
\text { val } p=e
$$

- This is great for getting (all) pieces out of an each-of type
- Can also get only parts out (see the book or ask later)
- Usually poor style to put a constructor pattern in a val-binding
- This tests for the one variant and raises an exception if a different one is there (like hd, tl, and valOf)

Better example

This is reasonable style

- Though we will improve it one more time next
- Semantically identical to one-branch case expressions

```
fun sum_triple triple =
    let val (x, y, z) = triple
    in
        x + y + z
    end
```

fun sum_stooges stooges $=$
let val $\{$ larry=x, moe=y, curly=z\} = stooges
in
$x+y+z$
end

A new way to go

- For homework 2:
- Do not use the \# character
- You won't need to write down any explicit types
- These are related
- Type-checker can use patterns to figure out the types
- With just \#foo it can't "guess what other fields"

Function-argument patterns

A function argument can also be a pattern

- Match against the argument in a function call

$$
\text { fun } f p=e
$$

Examples:

```
fun sum_triple (x, y, z) =
    x + y + z
fun sum_stooges {larry=x, moe=y, curly=z} =
    x + y + z
```


Hmm

A function that takes one triple of type int*int*int and returns an int that is their sum:

```
fun sum_triple (x, y, z) =
    x + y + z
```

A function that takes three int arguments and returns an int that is their sum

```
fun sum_triple (x, y, z) =
    x + y + z
```

See the difference? (Me neither.) ©

The truth about functions

- In ML, every function takes exactly one argument (*)
- What we call multi-argument functions are just functions taking one tuple argument, implemented with a tuple pattern in the function binding
- Elegant and flexible language design
- Enables cute and useful things you can't do in Java, e.g.,

```
fun rotate_left (x, y, z) = (y, z, x)
fun rotate_right t = rotate_left(rotate_left t)
```

* "Zero arguments" is the unit pattern () matching the unit value ()

One-of types in function bindings

As a matter of taste, I personally have never loved this syntax, but others love it and you're welcome to use it:

```
fun f p1 = e1
    | f p2 = e2
    | f pn = en
```

Example:

```
fun eval (Constant i) = i
    | eval (Add(e1,e2)) =
        (eval e1) + (eval e2)
```

| eval (Negate e1) =
~ (eval e1)

As a matter of semantics, it's syntactic sugar for:

```
fun f x = el
    case x of
        p1 => e1
    | p2 => e2
```


More sugar

By the way, conditionals are just a predefined datatype and if-expressions are just syntactic sugar for case expressions

```
datatype bool = true | false
if e1 then e2 else e3
case e1 of true => e2 | false => e3
```


Nested patterns

- We can nest patterns as deep as we want
- Just like we can nest expressions as deep as we want
- Often avoids hard-to-read, wordy nested case expressions
- So the full meaning of pattern-matching is to compare a pattern against a value for the "same shape" and bind variables to the "right parts"
- More precise recursive definition coming after examples
- Examples:
- Pattern $\mathrm{a}:: \mathrm{b}:: \mathrm{c}:: \mathrm{d}$ matches all lists with >= 3 elements
- Pattern a::b::c::[] matches all lists with 3 elements
- Pattern ($(a, b),(c, d)):: e$ matches all non-empty lists of pairs of pairs

Useful example: zip/unzip 3 lists

```
fun zip3 lists =
    case lists of
        ([],[],[]) => []
| (hd1::tl1,hd2::tl2,hd3::tl3) =>
            (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
| _ => raise ListLengthMismatch
```

fun unzip3 triples =
case triples of
[] => ([],[],[])
| (a,b,c)::tl =>
let val (11, 12,13) = unzip3 tl
in
(a::11,b::12,c::13)
end

More examples in the code for the lecture

(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If p is a variable x, the match succeeds and x is bound to v
- If p is _, the match succeeds and no bindings are introduced
- If p is $(p 1, \ldots, p n)$ and v is $(v 1, \ldots, v n)$, the match succeeds if and only if $p 1$ matches $v 1, \ldots, p n$ matches $v n$. The bindings are the union of all bindings from the submatches
- If p is $C p 1$, the match succeeds if v is $C v 1$ (i.e., the same constructor) and $p 1$ matches $v 1$. The bindings are the bindings from the submatch.
- ... (there are several other similar forms of patterns)

