
Name:

CSE 341, Fall 2004, Midquarter Examination
1 November 2004

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 1:20.

• You can rip apart the pages, but please write your name on each page.

• There are a total of 60 points, distributed unevenly among 5 questions (each with multiple parts).

• When writing code, style matters, but don’t worry about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

1. Consider this datatype for non-empty lists (but not built-in ML lists) of integers:

datatype t = One of int | More of int * t

(a) (4 points) Write an ML function length that takes t and returns how many int values are in
the t. Your solution must not be tail-recursive.

(b) (6 points) Write an ML function rev map that takes 3 arguments (as a tuple): (1) A function f
from integers to integers, (2) a t called acc, and (3) a t called lst. The function should return a
t that is the result of reversing lst, applying f to every int to the reversed list, and appending
that result to acc. For example,

rev map ((fn x => x+1), (More (0, One(1))), (More(3, More(4, One(5)))))

should evaluate to:

More(6, More (5, More(4, More(0, One(1)))))

Implement rev map as a tail-recursive function that uses no helper functions.

(c) (3 points) What is the type of rev map?

2

Name:

2. For each of the following programs, give the value that ans is bound to after evaluation. Underlining
is just to help you see the differences between problems.

(a) (3 points)

fun f x =
let val x = x + 1

val y = x + 1
in
y + 1

end
val x = 1
val ans = f x

(b) (3 points)

fun f x =
let val y = x + 1

val x = x + 1
in
y + 1

end
val x = 1
val ans = f x

(c) (3 points)

fun f (x,y) =
if x=10
then (fn x => x + y)
else (fn x => x - y)

val x = f(3,4)
val ans = x 10

(d) (4 points)

fun f (x,y) =
(fn x => if x=10

then x + y
else x - y)

val x = f(3,4)
val ans = x 10

3

Name:

3. Consider this ML function:

fun someFun (f,g,start,stop) =
let fun loop n =

(n <= stop) andalso ((f (g n)) orelse (loop (n + 1)))
in
loop start

end

(a) (5 points) Fill in the blanks to give the type of someFun.
Hint: The solution has one type variable, which appears twice.

(*

*

*

) ->

(b) (7 points) What does someFun compute? (Describe what it computes from a caller’s perspective,
not how someFun works. Start your answer with
“someFun(f,g,start,stop) evaluates to if and only if . . . ”.)

(c) (2 points) Fill in the blank so evaluating this programs produces true:

val x =
someFun((fn z => z = 6), (fn y => x * y), x, (x + 1))

4

Name:

4. Each pair of expressions below is not totally contextually equivalent. Briefly explain why. (Underlining
just emphasizes differences.)

(a) (3 points)
let val x = 0 in x end and let val x = (f 3) - (f 3) in x end

(b) (4 points)
(fn x:int => fn z:int => x - y) y and (fn x:int => fn y:int => x - y) y

5

Name:

5. Consider this ML structure definition:

structure M :> MSIG =
struct
type one or two = bool * int * int
fun abs val i = if i < 0 then ~i else i
fun mkOne i = (false,(abs val i),~1)
fun mkTwo (i,j) = (true,(abs val i),(abs val j))
fun last (x : one or two) = if #1 x then #3 x else #2 x

end

(a) (4 points) Why is the definition of type one or two bad style? Suggest a different way to
program this idea that uses ML’s features more appropriately. (Hint: We are asking about the
type definition. The fact that last doesn’t use pattern-matching is not the answer.)

(b) For each of the following MSIG definitions, determine if a client can make a call to last evaluate
to a negative number. Explain briefly.

i. (3 points)
signature MSIG =
sig
type one or two = bool * int * int
val mkOne : int -> one or two
val mkTwo : int * int -> one or two

end

ii. (3 points)
signature MSIG =
sig
type one or two = bool * int * int
val mkTwo : int * int -> one or two
val last : one or two -> int

end

iii. (3 points)
signature MSIG =
sig
type one or two;
val mkOne : int -> one or two
val mkTwo : int * int -> one or two
val last : one or two -> int

end

6

