
Name:

CSE 341, Winter 2008, Midterm Examination
8 February 2008

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• You can rip apart the pages, but please staple them back together before you leave.

• There are 65 points total, distributed unevenly among 5 questions (all with multiple parts).

• When writing code, style matters, but don’t worry about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

1. This problem uses this datatype definition:

datatype my_string_list = Nothing | Something of string * my_string_list

(a) (4 points) Write a function total_size that computes the sum of the sizes of the strings in a
my_string_list. Use the ML library function String.size, which computes a string’s size and
has type string->int.

(b) (7 points) Consider this ML program:

exception Foo

fun f (lst,n) =
if n<=0
then Nothing
else case lst of

Nothing => raise Foo
| Something(s,lst) => Something(s,f(lst,n-1))

Describe what f computes (not how it computes it). Be sure to cover all possible cases.

(c) (3 points) Suppose we modify n<=0 to be n=0 in f. Describe how the behavior of f does or does
not change for all possible cases.

Solution:

(a) fun total_size lst =
case lst of
Nothing => 0

| Something(s,lst) => (String.size s) + (total_size lst)

(b) Given a my_string_list lst and a postive number n, f returns a my_string_list that contains
the first n elements of lst. For example, f(Something("x",Something("y",Nothing)), n)
evaluates to Something("x",Nothing) if n is 1 and Nothing if n is 0. If n is greater than the
length of lst (i.e., the number of Something constructors in the value bound to lst), then f
raises the exception Foo. If f is passed a non-positive number, it returns Nothing.

(c) The behavior is exactly the same as before except that it now raises an exception if passed a
negative number. (Note it cannot go into an infinite loop because lst always has finite length.)

2

Name:

2. For each of the following programs, give the value that ans is bound to after evaluation.

(a) (4 points)

val x = 1
val f = fn x => fn y => x + y
val x = 2
val g = f x
val x = 3
val ans = g x

(b) (4 points)

val x = 1
val f = fn y => y x
val x = 7
val g = fn y => x - y
val ans = f g

(c) (4 points)

fun f x = List.map hd x
fun g x =

case x of
a::(b::c) => b

| _ => 0
val ans = g (f [[1,2],[3,4],[5,6],[7,8]])

Solution:

(a) 5

(b) 6

(c) 3

3

Name:

3. (a) (8 points) Write a function majority that takes a function f and a list lst and returns true if
and only if f returns true for a strict majority of the list elements.

• majority should take its argument in curried form with f first.
• Write and use a helper function that returns an int (which might be positive or negative).
• Do not use any ML library functions.

(b) (3 points) What is the type of majority?

(c) (3 points) Use a val binding and majority to define mostly_positive, which should take a
lst and return true if and only if a strict majority of its elements are strictly greater than 0.

(d) (2 points) What is the type of mostly_positive?

Solution:

(a) fun majority f lst =
let fun vote lst =

case lst of
[] => 0

| hd::tl => (if f hd then 1 else ~1) + (vote tl)
in (vote lst) > 0 end

(b) (’a -> bool) -> ’a list -> bool

(c) val mostly_positive = majority (fn x => x > 0)

(d) int list -> bool

4

Name:

4. Consider these two implementations of fold for ML lists. The first one is what we studied in lecture.

fun fold1 f acc lst =
case lst of
[] => acc

| hd::tl => fold1 f (f(acc,hd)) tl

fun fold2 f acc lst =
case lst of
[] => acc

| hd::tl => f(fold2 f acc tl, hd)

(a) (3 points) Which of the fold functions above is tail-recursive?

(b) (4 points) What does
fold1 (fn (acc,next) => if acc=next then 17 else acc+next) 0 [0,1]

evaluate to?

(c) (3 points) What does
fold2 (fn (acc,next) => if acc=next then 17 else acc+next) 0 [0,1]

evaluate to?

Solution:

(a) fold1 is tail-recursive; fold2 is not

(b) 18

(c) 1

5

Name:

5. Suppose version 1.0 of your software uses this ML structure definition:

structure M :> MSIG =
struct
datatype age = Older | Younger
datatype contact = Friend of age | Enemy of age
fun makeFriend a = Friend a
fun makeEnemy a = Enemy a
fun isFriend c = case c of Friend _ => true | _ => false
fun isOlder c = case c of Friend(Older) => true | Enemy(Older) => true | _ => false

end

Now suppose in verstion 2.0 of your software you want to replace the structure with this one:

structure M :> MSIG =
struct
datatype age = Older | Younger
datatype relation = Friend | Enemy
type contact = age * relation
... (* see part a *)

end

(a) (5 points) Provide 4 function bindings to complete version 2.0 of the structure so that it provides
the same functionality as the version 1.0 structure.

(b) (5 points) Complete this signature such that both version 1.0 and version 2.0 of structure M
would type-check. Use one abstract type definition and 4 val bindings.

signature MSIG =
sig
datatype age = Older | Younger
...

end

(c) (3 points) Explain how version 1.0 of the structure could be made a few characters shorter by
exploiting a notion of function equivalence we studied.

6

Name:

This page intentionally blank.

Solution:

(a) fun makeFriend a = (a,Friend)
fun makeEnemy a = (a,Enemy)
fun isFriend (_,r) = r = Friend (* pattern-matching solutions also fine *)
fun isOlder (a,_) = a = Older (* pattern-matching solutions also fine *)

(b) signature MSIG =
sig

datatype age = Older | Younger
type contact
val makeFriend : age -> contact
val makeEnemy : age -> contact
val isFriend : contact -> bool
val isOlder : contact -> bool

end

(c) The definitions of makeFriend and makeEnemy use unnecessary function wrapping. We could
write:

val makeFriend = Friend
val makeEnemy = Enemy

7

