
CSE 341, Spring 2011, Assignment 1
Due: Thursday 7 April, 11:00PM

Write a series of SML functions to solve the following problems. Your answers should be collected in a
single SML source file named hw1.sml. Your solutions should use basic SML features corresponding to those
covered in class so far and described in the Ullman book up through sec. 3.2. These include expressions, top-
level bindings, tuples, lists, and functions. You should not use pattern matching or let in this assignment
— we’ll have plenty of time to practice those later. You also must not use references or arrays or other
non-functional constructs. You are free to define additional “helper” functions if you like.

Programs should be written in good style, with appropriate names, clear indentation, useful comments and
so forth. The comment describing each function should include the problem number.

1. Write a function sumTo that takes an integer n as an argument and that computes the sum of the first
n reciprocals:

n∑
i=1

1

i

For example, sumTo(2) should return 1.5. The function should return 0.0 if n is 0. You may assume
that the function is not passed a negative value of n.

2. Write a function repeat that takes a string and an integer as arguments and that returns a string
composed of the given number of occurrences of the string. For example, repeat(“abc”, 3) should
return “abcabcabc”. You may assume that the function is not passed a value for the second argument
that is negative.

3. Write a function twos that takes a single integer argument and that returns the number of factors of
two in the number. For example, the number 84 when expressed as a product of prime factors is 2 * 2
* 3 * 7, which means that it has 2 factors of 2. Similarly the number ∼30 would be expressed as ∼(2
* 3 * 5), which means that it has 1 factor of 2. You may assume that the value passed to the function
is not equal to 0.

4. Write a function numNegative that takes a list of integers as an argument and that returns a count of
the number of negative integers in the list. For example, numNegative([3, 17, ∼9, 34, ∼7, 0]) should
return 2.

5. Write a function absList that takes a list of int * int tuples and that returns a new list of int * int

tuples where every integer is replaced by its absolute value. For example, absList([(∼38, 47), (983,
∼14), (∼17, ∼92), (0, 34)]) should return [(38, 47), (983, 14), (17, 92), (0, 34)]. This is easier to solve
if you write a helper function to process one tuple.

6. Write a function split that takes a list of integers as an argument and that returns a list of the tuples
obtained by splitting each integer in the list. Each integer should be split into a pair of integers whose
sum equals the integer and which are each half of the original. For odd numbers, the second value
should be one higher than the first. For example, split([5, 6, 8, 17, 93, 0]) should return [(2, 3), (3,
3), (4, 4), (8, 9), (46, 47), (0, 0)]. You may assume that all of the integers in the list passed to the
function are greater than or equal to 0.

7. Write a function getNth that takes a list of ints and an int n and returns the nth element of the list
where the head of the list is 1st. If the list has too few elements, your function should apply hd to the
empty list, which will raise an exception.

8. Write a function daysInMonth that takes an integer representing a month as an argument and that
returns the number of days in that month. You may assume that the month value passed is between
1 and 12 inclusive. You may also assume that the month is not part of a leap year.

1



9. Write a function absoluteDay that takes two integers representing a month and day as parameters
and returns the absolute day of the year between 1 and 365 that is represented by that month/day.
For example, Jan 1 is absolute day #1; Jan 2 is #2; Jan 31 is #31; Feb 1 is #32; and so on, up to
Dec 31, which is #365. You may assume that the month value passed is between 1 and 12 inclusive
and that the day value passed is a positive integer. You may also assume that the date is not part of
a leap year.

10. Write a function numberBeforeReachingSum that takes an int (which you can assume is non-negative)
and an int list and returns an int. It returns the number of elements, starting from the beginning,
in the list that add up to at most sum without going over. If sum is greater than the sum of all numbers
in the list, your function should apply hd to the empty list, which will raise an exception.

11. Write a function whatMonth that takes a day of year (i.e., a number between 1 and 365) and returns
what month that day is in (1 for January, 2 for February, etc.). Use a list holding 12 integers and your
answer to the previous problem.

12. Write a function isSorted that takes a list of integers and that returns whether or not the list is in
sorted (nondecreasing) order (true if it is, false if it is not). By definition, the empty list and a list of
one element are considered to be sorted.

13. Write a function insert that take an int and a sorted int list as parameters and that returns the list
obtained by inserting the int into the list so as to preserve sorted order. For example, insert(8, [1, 3,
7, 9, 22, 38]) should return [1, 3, 7, 8, 9, 22, 38].

14. Write a function isort that takes an int list as a parameter and that returns the list obtained by
sorting the list. In writing isort, you should call your insert function from the previous problem. The
result will be an ML solution to the classic insertion sort algorithm.

Type Summary
Evaluating a correct homework solution should generate these bindings:

val sumTo = fn : int -> real

val repeat = fn : string * int -> string

val twos = fn : int -> int

val numNegative = fn : int list -> int

val absList = fn : (int * int) list -> (int * int) list

val split = fn : int list -> (int * int) list

val getNth = fn : int list * int -> int

val daysInMonth = fn : int -> int

val absoluteDay = fn : int * int -> int

val numberBeforeReachingSum = fn : int * int list -> int

val whatMonth = fn : int -> int

val isSorted = fn : int list -> bool

val insert = fn : int * int list -> int list

val isort = fn : int list -> int list

Of course, generating these bindings does not guarantee that your solutions are correct. Test your functions.

Assessment
Your solutions should be:

• Correct

• In good style, including indentation and line breaks

• Written using the features we have used in class so far as outlined at the beginning of the assignment.

2



Turn-in Instructions

• Put all your solutions in one file named hw1.sml.

• The first line of your .sml file should be an ML comment with your name and the phrase homework 1.

• Use the regular Catalyst dropbox to submit your assignment.

3


