
CSE 341, Spring 2011, Assignment 3
Due: Sunday 24 April, 11:00PM

You will define several SML functions. Many will be very short because they will use other functions that
take and/or return functions. The latter part of the assignment relates to implementing pattern-matching
(somewhat like in ML). You may use functions in ML’s library; the problems point you toward the useful
functions. The sample solution is about 120 lines, including the provided code. This assignment is probably
more difficult than homework 2 even though (or perhaps because) many of the problems have 1-line answers.

Download hw3provided.sml from the course website.

1. Write a function only_capitals that takes a string list and returns a string list containing only
strings from the argument that start with an uppercase letter. Use library functions List.filter,
Char.isUpper, and String.sub to produce a 1- or 2-line solution.

2. Write a function longest_string1 that takes a string list and returns the longest string in the list.
If the list is empty, return "". In the case of a tie, return the string closest to the beginning of the list.
Use foldl, String.size, and no (other) recursion.

3. Write a function longest_string2 that is exactly like longest_string1 except in the case of ties
it returns the string closest to the end of the list. Your solution should be almost an exact copy of
longest_string1.

4. Write functions longest_string_helper, longest_string3, and longest_string4 such that:

• longest_string3 has the same behavior as longest_string1 and longest_string4 has the
same behavior as longest_string2.

• longest_string_helper has type (int * int -> bool) -> string list -> string

(notice the currying). This function will look a lot like longest_string1 and longest_string2

but is more general because it takes a function as an argument.

• longest_string3 and longest_string4 are defined with val-bindings and partial applications
of longest_string_helper.

5. Write a function longest_capitalized that takes a string list and returns the longest string in
the list that begins with an uppercase letter (or "" if there are no such strings). Use a val-binding
and the ML library’s o operatoer for composing functions.

6. Write a function rev_string that takes a string and returns the string that is the same characters in
reverse order. Use ML’s o operator, the library function rev for reversing lists, and two library functions
in the String module. (Browse the module documentation to find the most useful functions.)

The next two problems involve writing functions over lists that will be useful in later problems.

7. Write a function first_answer of type (’a -> ’b option) -> ’a list -> ’b (notice the 2 argu-
ments are curried). The first argument should be applied to elements of the second argument until the
first time it returns SOME v for some v and then v is the result of the call to first_answer. If the first
argument returns NONE for all list elements, then first_answer should raise the exception NoAnswer.
Hints: Sample solution is 5 lines and does nothing fancy.

8. Write a function all_answers of type (’a -> ’b list option) -> ’a list -> ’b list option

(notice the 2 arguments are curried). The first argument should be applied to elements of the second
argument. If it returns NONE for any element, then the result for all_answers is NONE. Else the
calls to the first argument will have produced SOME lst1, SOME lst2, ... SOME lstn and the result of

1

all_answers is SOME lst where lst is lst1, lst2, ..., lstn appended together (order doesn’t matter).
Hints: The sample solution is 8 lines. It uses a helper function with an accumulator and uses @. Note
all_answers f [] should evaluate to SOME [].

The remaining problems use these type definitions, which are similar to ML-style pattern matching:

datatype pattern = Wildcard | Variable of string | UnitP | ConstP of int

| TupleP of pattern list | ConstructorP of string * pattern

datatype valu = Const of int | Unit | Tuple of valu list | Constructor of string * valu

Given valu v and pattern p, either pmatches v or not. If it does, the match produces a list of string * valu

pairs; order in the list does not matter. The rules for matching should be unsurprising:

• Wildcard matches everything and produces the empty list.

• Variable s matches any value v and produces the one-element list holding (s,v).

• UnitP matches only Unit.

• ConstP 17 matches only Const 17 (and similarly for other integers).

• TupleP ps matches a value of the form Tuple vs if ps and vs have the same length and for all i,
the ith element of ps matches the ith element of vs. The list produced is all the lists from the nested
pattern matches appended together.

• ConstructorP(s1,p) matches Constructor(s2,v) if s1 and s2 are the same string (you can compare
them with =) and p matches v. The list produced is the list from the nested pattern match.

• Nothing else matches.

9. (This problem uses the pattern datatype but is not really about pattern-matching.)

(a) A function g has been provided to you. In an ML comment, describe in a few English sentences
the arguments that g takes and what g computes (not how g computes it, though you will have
to understand that to determine what g computes). Note you write no code for this subproblem.

(b) Use g to define a function count_wildcards that takes a pattern and returns how many Wildcard

patterns it contains.

(c) Use g to define a function count_wild_and_variable_lengths that takes a pattern and returns
the sum of the number of Wildcard patterns it contains and the string lengths of all the variables
in the variable patterns it contains. (Use String.size.)

(d) Use g to define a function count_some_var that takes a string and a pattern (as a pair) and
returns the number of times the string appears as a variable in the pattern.

10. Write a function check_pat that takes a pattern and returns true if and only if all the variables
appearing in the pattern are distinct from each other (i.e., use different strings). Note the choice of
strings for constructors does not matter. Hints: The sample solution uses two helper functions. The
first takes a pattern and returns a list of all the strings it uses for variables. Using foldl with a
function that uses append is useful in one case. The second takes a list of strings and decides if it has
repeats. List.exists may be useful. Sample solution is 15 lines.

11. Write a function match that takes a valu * pattern and returns a (string * valu) list option,
namely NONE if the pattern does not match and SOME lst where lst is the list of bindings if it
does. Hints: Sample solution has one case expression with 7 branches. The branch for tuples uses
all_answers and ListPair.zip. Sample solution is 13 lines.

12. Write a function first_match that takes a value and a list of patterns and returns a
(string * valu) list option, namely NONE if no pattern in the list matches or SOME lst where lst
is the list of bindings for the first pattern in the list that matches. Hints: Sample solution is 3 lines
and uses first_answer and a handle-expression.

2

13. (Challenge Problem) Write a function typecheck_patterns that “type-checks” a pattern list.
Types for our made-up pattern language are defined by:

datatype typ = Anything (* any type of value is okay *)

| UnitT (* type for Unit *)

| IntT (* type for integers *)

| TupleT of typ list (* tuple types *)

| Datatype of string (* some named datatype *)

typecheck_patterns should have type ((string * string * typ) list) * (pattern list) -> typ option.
The first argument contains elements that look like ("foo","bar",IntT), which means constructor
foo makes a value of type Datatype "bar" given a value of type IntT. You may assume list elements
all have different first fields (the constructor name), but there are probably elements with the same
second field (the datatype name). Under the assumptions this list provides, you “type-check” the
pattern list to see if there exists some typ (call it t) that all the patterns in the list can have. If so,
return SOME t, else return NONE.

You must return the “most lenient” type that all the patterns can have. For example, if the pat-
terns are TupleP[Variable("x"),Variable("y")] and TupleP[Wildcard,Wildcard], you must re-
turn TupleT[Anything,Anything] even though they could both have type TupleT[IntT,IntT]. As
another example, if the only patterns are TupleP[Wildcard,Wildcard] and
TupleP[Wildcard,TupleP[Wildcard,Wildcard]], you must return
TupleT[Anything,TupleT[Anything,Anything]].

Warning: The sample solution does not include the challenge problem.

Type Summary: Evaluating a correct homework solution should generate these bindings, in addition to
the bindings for type and exception definitions:

val only_capitals = fn : string list -> string list

val longest_string1 = fn : string list -> string

val longest_string2 = fn : string list -> string

val longest_string_helper = fn : (int * int -> bool) -> string list -> string

val longest_string3 = fn : string list -> string

val longest_string4 = fn : string list -> string

val longest_capitalized = fn : string list -> string

val rev_string = fn : string -> string

val g = fn : (unit -> int) -> (string -> int) -> pattern -> int

val count_wildcards = fn : pattern -> int

val count_wild_and_variable_lengths = fn : pattern -> int

val count_some_var = fn : string * pattern -> int

val first_answer = fn : (’a -> ’b option) -> ’a list -> ’b

val all_answers = fn : (’a -> ’b list option) -> ’a list -> ’b list option

val check_pat = fn : pattern -> bool

val match = fn : valu * pattern -> (string * valu) list option

val first_match = fn : valu -> pattern list -> (string * valu) list option

Assessment: Your solutions should be correct, in good style (including indentation and line breaks), and
using features we have used in class.

Turn-in Instructions

• Put all your solutions in one file, hw3.sml.

3

• The first line of your .sml file should be an ML comment with your name and the phrase homework 3.

• Turn in your file using the Catalyst dropbox link on the course website.

4

